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ABSTRACT 

Van Benthem, Mark Hilary, Ph.D., Department of Chemistry, College of Science and 
Mathematics, North Dakota State University, November 1995. Chemometric Analysis of 
Multimode Fluorescence Data Obtained With a Pulsed Tunable Laser. Adviser: Dr. 
Gregory D. Gillispie. 

This research evaluated the capabilities of various chemometric methods for analysis of 

three-mode fluorescence data. Data were collected using pulsed Nd: YAG laser and pulsed 

Nd: YAG laser-pumped dye laser excitation and monochromator-PMT-digital oscilloscope 

detection. This apparatus produced data in the form of nanosecond scale time decay 

profiles at numerous emission wavelengths generating a wavelength-time matrix (WTM). 

Third-order data were produced by varying analyte concentrations or changing excitation 

wavelength to produce a time-resolved excitation-emission matrix (TREEM). Trilinear 

decomposition (TLD) and global analysis methods were applied to a WTM-concentration 

3-array and a TREEM. TLD methods and linear discriminant analysis and classification 

were performed on highly complicated data in the form of WTMs of various fuels. 

The three-mode data were decomposed with an eigenanalysis-based procedure (EBP); 

three-mode alternating least squares (3M-ALS), also known as PARAFAC; and three-mode 

nonnegative alternating least squares (3M-NNALS). 

Various rank estimation procedures were evaluated for the two-mode and three-mode 

data. The efficacy of classification and clustering algorithms applied to reduced forms of 

three-mode fuel fluorescence data was also demonstrated. 

Analyses of the WTM-concentration 3-array illustrate the capabilities of various rank 

estimation and profile extraction techniques with low-rank data. This four-component 

in 



WTM-concentration 3-array was easily decomposed with TLD methods. 3M-ALS and 

3M-NNALS offered a slight improvement to the EBP result. 3M-NNALS offered a minor 

computation time improvement over 3M-ALS. 

A TREEM of a four-component solution of fluorene, naphthalene, carbazole, and 

phenanthrene in water was measured. TLD was difficult because of extensive spectral and 

time-mode overlap. The EBP and 3M-ALS were unable to provide realistic factor profiles. 

3M-NNALS produced very good results, generating recognizable factors in one-tenth of the 

time required by 3M-ALS. 

WTMs of fuels on soil matrices were analyzed. TLD using an EBP was not successful, 

yielding complex eigenvectors or chemically meaningless factors. 3M-ALS performed 

better than the EBP, but it produced multiple factor degeneracies and took a great deal of 

computation time. 3M-NNALS performed the best of the three TLD procedures. 

Computation time was at least two orders of magnitude faster than 3M-ALS. 

IV 
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1. INTRODUCTION 

Chemical analysis provides information about the composition of a material (which 

might be groundwater in a well, soil under a filling station, an ingot of a metal alloy, etc.) 

to address a concern someone has about the material.1 For example, is water in the well 

safe to drink? Is there underground petroleum contamination in the property for sale? Can 

this alloy be used in a turbine? Answering the fundamental question posed to the analyst 

requires determination of one or more chemical parameters. The desired parameters are 

sometimes qualitative in nature, i.e., identities of chemical components (what heavy metals 

are in the water, petroleum products in the soil, strategic metals in the alloy), but more 

often quantitative information, i.e., the amounts of chemical components (how much lead is 

in the groundwater, gasoline in the soil, or chromium in the alloy, etc.) is desired. The job 

of the analytical chemist is to obtain the best information in the necessary form to answer 

these questions. It is in the interest of both the analytical chemist and the client to obtain 

accurate data in a fast, inexpensive, and minimally invasive fashion. 

Traditional analysis methods require collection of representative samples from the bulk 

material for subsequent laboratory analysis. Laboratory analysis methods provide great 

specificity at the expense of slow speed and the requirement of extensive sample 

preparation and tedious data analysis. In addition, the precision and the accuracy of the 

data are often limited by the quality of the sampling,2 which may not have been performed 

by the chemist;3 for environmental projects, the chemist, in fact, rarely has any connection 

with the sampling. Analytical techniques that allow measurement of bulk materials in real 



time and in situ would be a windfall to analytical chemistry. Fiber-optic spectroscopy 

provides such utility in a number of situations. 

Fiber-optic spectroscopy can be extremely valuable in situations where sampling is very 

difficult, dangerous, or time critical. It may also be indicated when analysis involves 

obtaining information about a remote or otherwise inaccessible location, for example, 

spectroscopic monitoring of jet engine exhaust in flight. One may also use it to monitor 

multiple stages of an industrial process simultaneously. Safety while performing analysis is 

another issue that may dictate the use of fiber optics. Spectroscopic analysis of explosives 

or radioactive materials are examples of analyses that may be more safely performed at a 

distance using fiber optics. 

Near-infrared (NIR) absorbance spectroscopy performed over fiber optics has been 

practiced for many years 4 and has reached a relatively advanced stage of commercial 

maturity. NIR instruments are used for industrial process monitoring and medical 

diagnostics and in environmental chemistry. In applications for which quantitative 

information is required for species at high concentrations, it can be a superior analysis 

method, saving time and money. Because samples are not taken, however, special 

consideration must be given to interferences, i.e., absorbance by species other than the 

target analytes. 

Traditional analytical methods provide opportunities to eliminate sample interferences 

before the actual data collection. Great effort is expended to eliminate interferences since 

they can be a dominant source of error. If the analyte response cannot be separated from 

that of the interference, one must model the influence of the interferences on the analyte 



response. Fiber-optic spectroscopy and other in situ techniques, which generally do not 

allow sample manipulation, are especially susceptible to interferences and matrix effects. 

The burden of detecting and treating the interferences falls on the quality of the 

spectroscopic data and, ultimately, on the data analysis. 

To correctly predict the concentration of a spectroscopically active species, all 

spectroscopically active species present in the unknown must be included in the calibration 

model.5 If there are interfering species whose contributions were not accounted for in the 

calibration procedure, the concentration determination will be biased.6 For chemically 

complex systems, as are often encountered in environmental analyses, interferences can be 

a difficult problem to overcome. 

Multivariate analysis of NTR spectroscopic data represents a highly refined approach to 

modeling absorbance data and is the source of the technique's popularity and utility. 

However, because MR (and other absorbance techniques) are limited to a single data 

mode* viz., wavelength, their ability to predict unknown parameters in the presence of 

interferences not included in the calibration model is limited. Multimode data, of order* 

greater than that available in absorbance, can allow calibration and analysis even if there 

are interferences not modeled in the calibration.5'7 

Fluorescence spectroscopy is readily adapted to multimode techniques.8 Moreover, it is 

several orders of magnitude more sensitive than absorbance9 and, unlike absorbance 

In many works, the term dimension is used in place of the term mode, which will be used here  The term mode 
indicates the functionality employed to acquire data. For example, wavelength is the mode utilized in absorbance 
jectroscopy while charge to mass ratio is the mode of mass spectral data, time is the mode of gas Chromatographie 
data, etc. Mode is explained m greater detail in Appendix B. 

f The meaning of the term order is discussed in greater detail in Chapter 3; however, consider it to represent the number 
or modes used to collect data. 



techniques, is easily applied to highly scattering matrices like soils. By measuring the 

fluorescence emission spectrum at different excitation wavelengths (or equivalently, 

measuring the excitation spectrum at different emission wavelengths), one can generate a 

matrix of data commonly referred to as an excitation-emission matrix (EEM). The two 

modes of an EEM are the excitation wavelength and the emission wavelength. Similarly, 

one can measure the fluorescence emission at various emission or excitation wavelengths 

as a function of time following pulsed excitation to generate a wavelength-time matrix 

(WTM). A series of excitation-emission matrices obtained at various time delays following 

pulsed excitation represents three data modes. Given the higher order techniques 

potentially available and the overall versatility of the technique, fluorescence spectroscopy 

promises to be a superior spectroscopic analysis method in many circumstances. 

Unfortunately, fluorescence spectroscopy has an inherently lower signal-to-noise ratio 

(S/N) than absorbance spectroscopy.9 The ramifications here are lower precision 

measurements, hence, lower precision parameter determination (e.g., concentration). Of 

course, in situations that would otherwise lead to large sampling uncertainty or great risk 

associated with sampling, the precision trade-offs of a fiber-optic fluorescence 

measurement may be acceptable. Again, one must consider the type of information desired 

of the measurement (the data quality objectives). 

If the analysis goal is quantitative information, the analysis requires a calibration step 

followed by an unknown estimation step. The presumption in this case is that one knows 

the identity of the species present and desires the concentrations. However, when the goal 

of the analysis is qualitative information, one is faced with a more thorny problem; 



especially if the material has many unknown components with similar spectra and there are 

multiple matrix effects, as in environmental analysis. The parameters of interest now 

become the relative proportions of the spectral intensities as a function of wavelength, 

rather than their absolute magnitudes, i.e., the spectra of the contaminants. The data must 

be decomposed to yield the individual spectra of the components. 

The presence of noise in the spectral data can make decomposition difficult, leading to 

ambiguous results.10 Here, too, the multimode data provided by fluorescence compensate 

greatly in spite of the lower S/N compared to absorbance spectroscopy. Once again, the 

analyst is faced with trade-offs between S/N and sensitivity and higher data order. In fact, 

three-mode (and higher mode) data with linear independence between the modes (so-called 

trilinear data) produce a unique decomposition if some other mild assumptions are met.11'12 

Simulations of decomposition of trilinear data with various levels of noise demonstrate that 

analysis of fluorescence spectra is very encouraging.10 

Given the many potential advantages of fluorescence spectroscopy, its increasing use in 

the chemical analysis of complex systems is not surprising. Environmental analysis has 

been impacted immensely by the marriage of fiber optics and fluorescence.13 The EPA's list 

of the 20 most significant hazardous substances includes several fluorescent species.14 

Most common fuels contain significant levels of fluorescent compounds, specifically 

benzene and its single aromatic ring derivatives, naphthalene and substituted naphthalenes, 

and other polycyclic aromatic hydrocarbons (PAHs).15"17 Fuels also contain high levels of 

aliphatic hydrocarbons, which are not fluorescent (but could be determined by NTR). 

However, in terms of toxicity and carcinogenicity, the aliphatic compounds do not pose 



nearly the threat that the aromatic species do.18 It is fortunate, then, that fluorescence 

selectively detects the species of greatest concern. 

The collection of truly representative environmental samples from a suspected 

contaminated site can be extremely challenging and expensive}9 particularly in the case of 

subsurface samples. In the standard approach, the areas of interest must be drilled or core 

sampled. The installation cost of a single monitoring well can exceed $10,000, and this 

money is wasted if the well is not placed in an appropriate location. 

Once a well has been installed, the samples must be collected, packaged, shipped, 

stored, and analyzed judiciously so they are not corrupted. Loss of sample integrity could 

occur at any or several of these steps. Fuel-contaminated soil and water samples that 

contain easily lost volatile and semi-volatile components must be handled with great care. 

The elapsed time between sampling and availability of the chemical analysis report may be 

several weeks. To make matters worse, after the drilling or core sampling is finished, a 

substantial conduit remains for transport of the contaminants to other soil strata. Finally, 

analysis methods proscribed by EPA to extract contaminants from soil   involve the use of 

solvents which themselves are hazardous materials. Methods that would allow results in 

real time with lower costs are certainly desirable. A promising method to measure fuel 

contaminants in soil combines fiber-optic fluorescence with cone penetrometry. 

Cone penetrometry is a method of determining geophysical parameters of subsurface 

soil. It was developed primarily to characterize geology of areas during oil, gas, and 

mineral exploration. It employs a hydraulic press mounted in a very heavy (=20 tons) truck 

to drive sections of stainless steel pipe (=5 cm diameter) into the earth. The pipe contains 



various sensors to measure geotechnical parameters such as sleeve friction and tip 

resistance; these parameters form the basis of a soil-type characterization scheme. A 

sapphire window in the side of the pipe close to the tip of the probe allows optical access to 

the soil. Fiber optics leading to and from the window allow direct fluorescence 

examination of the soil. A new device has been developed specifically for this type of 

spectroscopy. The Rapid Optical Screening Tool (ROST™, Dakota Technologies, Inc., 

Fargo, ND) allows collection of a fluorescence time-resolved excitation-emission matrix 

(TREEM) of petroleum-contaminated soil using fiber-optic transmission of excitation and 

emission. 

The ROST™ utilizes a frequency doubled, Nd: YAG laser pumped-dye laser to generate 

ultraviolet laser excitation which can be passed into an optical fiber. The detector 

incorporates a scanning monochromator, photomultiplier tube (PMT), and digital storage 

oscilloscope (DSO). The output of the DSO is channeled into a personal computer (PC) 

and stored for processing. The coupling of ROST™ with the cone penetrometer makes a 

powerful tool that can quickly produce multimode spectra of contaminated soil to rapidly 

characterize a contaminated site. Compared to traditional methods of chemical analysis, 

cone penetrometry with fiber-optic detection is more cost effective and may be more 

accurate. 

The rationale for pursuing cone penetrometry-based fluorescence analysis is 

compelling. Its strength, in addition to the factors mentioned above, lies in the wealth of 

information obtained during an analysis. In addition, after performing cone penetrometry, 



the hole produced can be grouted as the probe is removed. This minimizes the spread of 

any hazardous material, unlike monitoring wells. 

Rarely do sites contain a single compound (e.g., benzene). The fuels and residue from 

other energy-producing activities (e.g., manufactured gas plants) represent very complex 

mixtures of fluorescing species. Consequently, the spectra of the contaminated soils are 

usually quite complex. The higher order inherent in fluorescence data may allow more 

reliable and complete chemical analysis than do single-mode techniques. 

Data obtained from cone penetrometry-based fluorescence is extensive. Consider 

measuring fluorescence intensity as a function of excitation wavelength, emission 

wavelength, fluorescence decay time, and probe depth at various locations on a site. It is 

easy to see how large the data sets can be. It is not practical to perform analysis, other than 

gross generalizations, on such enormous data sets without the use of a computer. 

Fortunately, there is a relatively young branch of chemistry designed to deal with data 

analysis of large and complicated data sets: chemometrics. 

Chemometrics has been defined as using chemical principles and mathematical and 

statistical methods to interpret and predict chemical data.    Much of chemometrics is an 

offshoot of developments in applied statistics used by psychometricians and 

econometricians to analyze data related to human behavior and the performance of markets, 

respectively.22 The general idea is to take a set of data pertaining to a group of subjects and 

draw inferences about the nature of the group. For example, a psychologist might want to 

analyze infant behavior in relation to different stimuli to learn about language development. 

It is also valuable to process the data to find a predictive method for subjects within or 



outside of the group. Economists, and almost everyone else, would like to be able to 

accurately predict when a stock price will go up and when it will go down. It may be 

apparent to the reader that some humans have exceptional methods of "data analysis" 

without the use of computers and complex algorithms. Given the proper training and/or 

experience, people can be very effective at detecting trends, recognizing patterns, 

estimating proportions, and predicting events. Certainly, there are very astute market 

speculators who make a very good living simply using their "feel" about the market, just as 

a skilled spectroscopist can identify a compound in a mixture and accurately estimate its 

concentration by briefly examining a spectrum. 

Analytical chemistry, though, demands much more of analysis than a rough guess, no 

matter how accurate. Chemometrics provides the analytical chemist with numerical tools 

capable of dealing with large and complicated sets of data and reducing them to a useful 

and desired form. 

Data reduction is the hallmark of a good chemometric analysis routine. From large sets 

of fluorescence data, one seeks the nature and quantity of the species giving rise to the 

fluorescence. These may be from contaminants in soil and groundwater or some other 

source. The objective here, and the subject of this thesis, was to examine chemometric 

methods that could assist an analyst in determining the identities of luminescent species in 

solutions and mixtures or the identity of a composite mixture (e.g., a fuel) using 

fluorescence data obtained from the ROST™ or a similar instrument. 

Chapter 2 of this work reviews various properties of fluorescence with particular 

attention paid to those aspects of fluorescence exploited by the ROST™. Chapter 3 

addresses the chemometric methods used to decompose ROST™ acquired data. The 



principles of factor analysis are discussed to identify or quantify unknowns. Methods of 

separating collections of data into groups using pattern recognition and classification 

schemes are the subject of Chapter 4. Results of the research conducted and 

complementary discussion are presented in Chapter 5. Chapter 6 incorporates conclusions 

about this research and recommendations for future work. For those not familiar with 

multivariate analysis and matrices, Appendix A compiles a selection of definitions and 

explanations of concepts covered throughout the thesis. Appendixes B and C also contain 

background material relevant to the subject of higher order factor analysis. 
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2. FLUORESCENCE REVIEW 

2.1 Fluorescence Principles 

Fluorescence in organic molecules is often related to the presence of delocalized n 

electrons,23 most notably in aromatic hydrocarbons and their derivatives. In the discussion 

of fluorescence principles, we shall use the language and nomenclature conventions 

relevant to the fluorescence of aromatic molecules. 

Absorption of a photon by a molecule in the ground electronic state, So, promotes the 

molecule into one of the states, Sn, of the excited electronic state manifold. The integrated 

strength of the electronic transition is governed by an integral involving the electronic 

wavefunctions, while the shape of the excitation spectrum is determined by the 

Franck-Condon factors. In general, electronically excited molecules in the condensed 

phase rapidly relax (~10"12 s) to a Boltzmann distribution of vibrational levels in the first 

excited singlet state, Si via the processes of internal conversion (S2 -» Sx) and vibrational 

relaxation (v'» 0 -> v' ~ 0). The absence of appreciable fluorescence from states higher 

in energy than Si is known as Kasha's rule.24 

Deactivation from the Si state occurs through a variety of mechanisms. The radiative 

Si to So deactivation process is referred to as fluorescence. Others processes include 

internal conversion (Sj —> S0), external conversion (energy transfer and quenching), and 

intersystem crossing (singlet to triplet conversion). The role of the Franck-Condon factors 

in determining the shape of the emission spectrum is similar to the way that they affect the 

excitation spectrum. After returning to So, the molecule vibrationally relaxes to a 
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Boltzmann distribution of vibrational levels. These collective phenomena have two 

important consequences: (1) for a given molecule, the shape of the fluorescence emission 

spectrum (i.e., the relative intensity distribution as a function of wavelength) is independent 

of the excitation wavelength; and (2) the shape of the fluorescence excitation spectrum is 

independent of the emission wavelength monitored during its acquisition. 

The depopulation rate of the excited state also has important consequences. The 

differential equation for the disappearance of Si after photoexcitation is 

-^-*r[S,]+*lir[SI]+^[S1] + t4[S1lQ], (2.1) 

where [S, ] is the concentration of molecules in the first excited state, kr is the first-order 

rate constant for radiative transition, knr is the first-order rate constant for non-radiative 

transitions combining internal conversion and intersystem crossing, kp is the first-order 

rate constant for unimolecular photochemistry, kq is the second-order rate constant for 

quenching, and [Q] is the concentration of a quenching species. The rate constants in (2.1) 

are usually combined into a pseudo-first-order rate constant, viz., 

k = kr+knr+kp+kq[Q]. (2.2) 

Thus, the fluorescence follows first-order kinetics and its intensity decays exponentially in 

time. The fluorescence lifetime, %, is the time required for the fluorescence intensity to fall 

to 1/e of its initial value following pulsed excitation of short duration. The relationship of 

lifetime to the rate constant is a reciprocal one, i.e., 

t=X- (2-3) 'k- 

Fluorescence lifetimes are generally in the range of 10"9 s -10"7 s.9 Lifetimes are affected 
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by a variety of factors, including solvent, other solutes, and dissolved oxygen. There are 

two standard methods in use today for measuring fluorescence lifetimes: pulsed or 

time-resolved techniques and harmonic or phase-modulated techniques.25'26 

2.2 Lifetime Measurement Techniques 

The nature of excited state lifetime determinations and the pitfalls associated with the 

different techniques are discussed in numerous sources, including a monograph by 

Demas.25 The two principal approaches, pulsed and phase-modulated techniques, are 

discussed in this section, with emphasis on the former since it was the one used in this 

research. 

It is convenient to relate lifetime determination to signal processing theory since 

fluorescence decay is, in reality, a time domain signal. Consider a fluorescing species as an 

analog system, like an electronic black box. The excitation photons can be viewed as 

simply an input, e(t), to the system. The output of the system is the fluorescence, fit), i.e., 

f(t) = e(t)*y(t), (2.4) 

where * denotes the mathematical operation of convolution, and y(t) is the impulse 

response of the fluorescence. Because these time-dependent signals are measured with a 

detector and electronic signal processors that impose their own time dependence, additional 

terms must be incorporated into the equation. The system now consists of the solution 

containing the species of interest: the detector, whose impulse response is d(t); and 

processing electronics, whose impulse response is l{i). The instrumentally observed 

fluorescence is 

f(t) = e(t)*y(t)*d(t)*l(t). (2.5) 
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Since the fundamentally interesting term here is the impulse response of the species 

decay, i.e., y(t), terms in (2.5) can be combined such that 

f(t) = E(t)*y(t), (2.6) 

with 

E(t) = e(t)*d(t)*l(t). (2.7) 

E{t) is called the instrument response function, and it can be defined as the input to the 

system, y(t), whose output is f(t). The convolution in (2.5) is defined by 

f(t)=j^E(x)y(t-x)dx=j°^E(t-x)y(x)dx. (2.8) 

Since the fluorescence derives from an actual physical process, the system is causal, i.e., the 

signal at any time does not depend on future values of the input to the system.27 In fact, 

since the impulse response is a physical (therefore, causal) system and y(t) is a causal 

system, the result is 

f(t)=j'E(x)y(t-x)dx, (2.9) 

for all t > 0 and zero for t < 0. Since y(t) has the form 

y(t) = e~b, (2.10) 

for all t > 0 and zero for t < 0, (2.8) becomes 

/(0 = e-faJo'£(x)efat^, (2.11) 

for all t > 0 and zero for t < 0, which is the common form for the convolution of an 

excitation with an exponential decay. 
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It is important to note that E(J) is not determined by just the excitation pulse shape 

itself. Rather, it reflects the response of the entire system except for the response of the 

fluorophore itself. The formulation of the relationship in (2.10) is important when 

considering how to extract the fluorescence lifetime from the data provided by pulsed and 

phase-modulated techniques. 

2.2.1 Pulsed Techniques 

In the pulsed methods, one attempts to measure the lifetime directly by exciting a 

solution containing the species of interest with a short duration burst of photons. The 

emission intensity is observed as a function of time following the excitation. Ideally, the 

response time of the detector and signal processor are much shorter than the decay, in 

which case one observes the true decay. Complications of this simple process occur 

because of three factors: finite excitation pulse width, i.e., e(t); the detection response time, 

i.e., d(t) with l(t); and experimental noise. 

There are a variety of excitation sources one can use to generate intense short pulses of 

UV and visible light. Three of the more popular sources are (1) gas-filled discharge lamps, 

which operate at a few kilohertz (KHz) with pulse durations of a few nanoseconds; (2) low- 

repetition rate (-100 Hz) excimer, nitrogen, and Nd:YAG lasers with typical pulse 

durations of a few nanoseconds; and (3) mode-locked and cavity dumped lasers with high- 

repetition rates (up to 80 MHz) and pulse durations in the picosecond range.28 

Of course, the selection of excitation source may depend upon the fluorophore under 

investigation, but it is also affected by the choice of detection scheme. Ideally, the pulse 

duration is chosen to be much shorter than the lifetime, in which case one could consider 
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e{t) a Dirac delta function, 8(t). If this is so, then one need only consider the response of 

the detection system in extracting the lifetime. However, if the pulse duration is not a delta 

function, the data will be smeared, and deconvolution is necessary. 

Pulsed detection schemes commonly used in measuring lifetimes in the nanosecond and 

subnanosecond regime include (1) time-correlated single-photon counting (TCSPC) which 

can measure picosecond lifetimes, (2) streak cameras which can also measure picosecond 

lifetimes, and (3) oscilloscopes. 

TCSPC employs two PMTs, signal amplifiers, constant fraction discriminators set up in 

parallel, a time-to-amplitude converter (TAC), and a multichannel analyzer (MCA).29 The 

excitation pulse simultaneously illuminates the sample and the triggering PMT. The 

triggering PMT detects the excitation pulse and sends an amplified "start signal" to the 

TAC to start the ramp generator of the TAC. If a fluorescence event is detected by the 

second PMT, a stop pulse is generated, and the TAC converts the ramp value to a time. 

The TAC is programmed to stop at a predetermined value if no event occurs. If an event 

occurs, the MCA places a count into the appropriate memory channel, thus building a 

histogram of events as a function of time. If multiple photon events reach the second PMT, 

the TAC will only see the first one and miss subsequent ones. To prevent this so-called 

"photon pileup," an average count rate of 0.01 to 0.05 per pulse is desirable.30 

TCSPC has many advantages. It is one of the most sensitive lifetime approaches owing 

to its need for low intensity fluorescence. It can measure decays much shorter than its 

system response would indicate. This results from the triggering and counting 

mechanisms. The start and stop signals are taken from the leading edge of the excitation 
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pulse and fluorescence, respectively, as detected by the PMT and determined by the CFD. 

Thus, a PMT with a several nanosecond response time may be used to measure a 

nanosecond lifetime directly (provided, of course, the excitation source is a S(t)). Since 

TCSPC is a counting experiment, it follows well-defined Poisson statistics, so error 

analysis is greatly simplified.25 TCSPC also has a large linear dynamic range, i.e., it has the 

ability to measure a wide (time) range of decay processes. 

The major disadvantage in TCSPC is the time required to collect a profile. For good 

statistics, the recommended minimum of counts in the peak channel is 100.000.30 With 

low repetition rate sources, acquisition of a decay curve can take many minutes or even 

hours. Mode-locked lasers are favored for TCSPC owing to their high repetition rates. 

Streak cameras can record very fast processes in real time by converting time domain 

information into spatial information. The process is as follows: (1) Incident photons are 

converted by the photoelectric effect to electrons at a photocathode. (2) The photoelectrons 

are accelerated by a potential difference into an electron deflection field, which is varied 

linearly in time. (3) The photoelectron beam is swept across a microchannel plate, and 

individual electrons are amplified within the microchannels before striking a phosphor 

screen. (4) The image from the phosphor is recorded by a vidicon or CCD. Streak cameras 

provide very high temporal resolution, having been extended into the femtosecond range.29 

However, it is difficult to get both high temporal resolution (<10 ps) and long observation 

times (>5 ns) simultaneously. Streak cameras are also very expensive. 

Oscilloscopes are, in general, the most inexpensive of the methods discussed here to 

measure lifetimes. In most oscilloscope-based lifetime studies, the anode signal from a 
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PMT is directly connected to an input channel of the scope. Oscilloscopes come in two 

basic varieties, analog and digital. Analog oscilloscopes are rarely used anymore for short 

lifetime (nanosecond regime) measurements, owing to the tediousness of the data 

processing. Formerly, images of the analog oscilloscope were captured photographically 

and the decay curves digitized manually for subsequent mathematical processing. Digital 

oscilloscopes or digital storage oscilloscopes (DSO) represent the state of the art in 

oscilloscope technology, and many are capable of recording transient signals in real-time 

or averaging repetitive transients. 

DSOs acquire analog signals, the PMT output, by sampling and digitizing. As the 

analog input enters the DSO, the analog-to-digital converter (ADC) selects or samples the 

value of the signal, a voltage, at discrete points in time. The voltage is then digitized and 

displayed and/or recorded to be used later. This acquisition process generates a quantized 

signal, which is a mapping from a continuous domain space to a discrete range space. By 

acquiring many observations of the same transient, one can improve the S/N. 

Several properties of the DSO affect the quality of the data it can produce. The ability 

of a DSO to accurately measure short duration signals is determined by the maximum 

sampling rate and the maximum analog bandwidth. The maximum sampling rate indicates 

the number of samples per second the ADC can acquire. The larger the sampling rate, the 

greater the time resolution the DSO can display. The rise time of the DSO is a measure of 

the DSOs ability to respond to rapid changes in signal. It is defined by the following 

formula: 

400 
r'sT- (2.12) 

Ja 
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where tr is the rise time in nanoseconds and fa is the analog bandwidth in megahertz, 

which specifies the frequency range the DSO can accurately measure.31 Rise times on good 

DSOs with sampling rates of 2 GS/s can be as short as 800 ps. 

2.2.2 Phase-modulated Techniques 

Phase-modulated spectroscopy is a method of indirectly measuring fluorescence 

lifetime by rapidly modulating the excitation light while simultaneously modulating the 

high voltage to the detector at almost the same rate.32 The phase of the emission modulator 

is shifted relative to the excitation to extract the phase dependence of the fluorescence 

intensity. With commercially available equipment capable of modulation frequencies of 

250 MHz, one can measure lifetimes as short as 1 ps. 

The theory and practice of phase-modulated spectroscopy has been discussed in the 

literature.25,26 The time-dependent fluorescence signal, D(f), generated in a 

phase-modulated instrument with angular modulation frequency, co (equal to 2%f, where/ 

is the modulation frequency in hertz), and phase-shift angle, <j>, is given by 

D(t) = A'(l + mexmsin(cot -0)), (2.13) 

where A' is the wavelength-dependent, steady-state (DC) component of the fluorescence 

emission, mex is the modulation depth of the excitation (i.e., the ratio of the AC amplitude 

to the DC intensity), and m is the demodulation factor (given by the modulation depth of 

the fluorescence divided by m^). 

The fluorescence lifetime may be calculated from the phase shift, xp, or the 

demodulation, Tm, using 
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T,=^, (2-14) 
P (0 

or 

_ If JL_iV (2-15) 

respectively. 

The phase-modulated method provides a fast, precise, and accurate way to measure 

fluorescence lifetimes in the laboratory. Unfortunately, when considering UV-visible 

fluorescence measurements, the phase-modulated method has lower S/N than the pulsed 

methods. While the state-of-the-art is advancing rapidly, in its present stage of 

development, phase-modulated instrumentation is more expensive and less amenable to 

fiber-optic and field experiments than the DSO-PMT method used in this work. 
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3. FACTOR ANALYSIS 

Malinowski   has defined factor analysis as "a multivariate technique for reducing 

matrices of data to their lowest dimensionality by the use of orthogonal factor space and 

transformations that yield predictions and/or recognizable factors." Some might consider 

the phrase "use of orthogonal factor space" overly restrictive, since many factor analysis 

methods employ non-orthogonal factors; but this definition provides an excellent starting 

point. Factor analysis methods for fluorescence data can be roughly separated into two 

areas: calibration (and prediction) and, what will be called here, profile extraction. 

The aim of calibration is to extract quantitative information (e.g., concentrations) about 

the constituents of an unknown sample. Calibration is usually performed as a two-step 

process. First, in the calibration step, a concentration-response model is constructed from 

the instrumental response to standards. In the following prediction step, the instrumental 

response of an unknown is measured, and the concentration of the unknown is estimated, 

using the model from the calibration step. 

The objective of profile extraction is qualitative information, in the form of 

recognizable factors, about the constituents of an unknown sample. These recognizable 

factors would be in the form of pure component spectra, time decay profiles, etc., which 

Malinowski33 would identify as real factors. For example, from an EEM of a 

two-component solution containing benzene and naphthalene, one would attempt to extract 

the benzene and naphthalene excitation and emission spectra. Profile extraction can be 

performed with or without standards. As Malinowski's definition suggests, there is 

sometimes overlap between the processes of calibration and profile extraction. 
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For environmental applications, one may have either or both goals in mind. The 

concern might be what toxic materials are present and at what concentrations in a soil or 

groundwater sample. To accomplish the quantitative goal using fluorescence data, one 

must develop a calibration model based on the relationship between fluorescence intensity 

and concentration. The qualitative goal is accomplished by extracting predictions of 

spectra or fluorescence decay curves and comparing them with entries in a database to 

identify the compound(s). For either goal, a sound understanding of the physical and 

mathematical nature of the fluorescence data is an important factor in constructing effective 

factor analysis schemes. 

The mathematical nature of different types of fluorescence data is addressed in this 

chapter. Methods of calibration and profile extraction based on the type of data collected 

are also presented. 

3.1 Fluorescence Data as Tensors 

Tensorial notation was first introduced to describe multivariate calibration in the field 

of chemometrics by Sanchez and Kowalski.34'35 Since then, Kowalski et al.5'7'36'38 have 

disseminated tensor terminology, borrowed from mathematics and physics, to categorize 

the types of data acquired by various instruments used by chemists. Objections to the use 

of the term tensor in chemometrics have been raised because there are some tensor 

conventions which do not carry over into chemometrics.39 However, there appear to be 

enough proponents to carry it into more general use. Owing to Kowalski's influence in this 

area of chemometrics, much of what follows is modeled after papers he has published on 

this subject.5 
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Tensor order in chemometrics indicates the number of modes inherent in a data set. 

Tensor order notation follows the same pattern as array order used in this thesis (see 

Definition A.22). The notation can be further extended to the instrumentation that collects 

the data to designate the tensor order of an instrument. 

The order of an instrument provides insight into the flexibility one has available in the 

data analysis and the type of information to be gleaned from the data produced by such an 

instrument. The order of an instrument indicates the maximum tensor order of data that 

can be obtained on a single sample of analyte. Here, the focus will be on fluorescence 

instruments and the various orders of data one can collect with them. 

3.1.1 Zeroth-order Instrumentation 

Measurement of fluorescence intensity of a single luminescent species in solution at a 

single excitation wavelength and a single emission wavelength yields a scalar datum,/, 

which is a zeroth-order tensor. An instrument which can only measure zeroth-order data is 

appropriately called a zeroth-order instrument. An example of a zeroth-order fluorescence 

instrument would be one with a mercury penlamp excitation source and a combination 

optical filter and PMT detector. The concentration of the luminescent species present is 

proportional to/. Therefore,/is a quantitative datum, but it provides no qualitative 

information concerning the luminescent species. In fact, the qualitative information, viz., 

that only a single luminescent species is present, would have to be known before the 

fluorescence measurement. Zeroth-order data are thus very limited in terms of the 

information they provide to the analyst. 
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3.1.2 First-order Instrumentation 

Measurement of fluorescence intensity as a function of emission wavelength, /(A), is 

a concept familiar to chemists. A decade ago, data acquisition with continuous scanning 

monochromators and strip chart recorders was common. The practice of most 

spectroscopists today is to measure spectra at discrete wavelengths with electronic 

recording of the data. Borrowing a term from signal processing, we refer to this as a 

quantized signal. An ordered collection of these quantized signals, /(A,), constitutes a 

vector, f, directed from the origin in n-dimensional space («-space), i.e., 

f = 

"/(A.)' 

AK) 
(3.1) 

where the subscript denotes the /th wavelength at which an intensity was measured. A 

quantized spectrum represents first-order data, and an instrument capable of measuring at 

best such a spectrum is a first-order instrument. 

An excitation spectrum, which is obtained by recording the fluorescence intensity at a 

fixed emission wavelength while the excitation wavelength is varied, also represents 

first-order data. Fluorescence decay data, /(,), are also first-order data and are measured 

by a first-order instrument. 

Two important properties of a vector are its length and its direction. When a single 

luminescent species is present, the length or norm of the spectral vector, ||f |, provides a 

measure of the amount of emitter present. A valuable attribute of the vector over 

zeroth-order data is that it provides many estimates of the intensity in a single experiment. 
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First-order data therefore provide a form of built-in signal averaging. The other main 

property of the spectral vector, its direction, gives insight into the identity of the emitter; 

thus, with first-order data, one gets the benefit of qualitative information. 

First-order fluorescence data also include the emission intensity as a function of (1) 

excitation wavelength, (2) fluorescence decay time, or (3) polarization of the emitted 

photons relative to the excitation photons. 

3.1.3 Second-order Instrumentation 

One can generate second-order data by combining first-order measurement modes. For 

example, as mentioned in the introduction, an EEM is obtained by scanning the emission 

wavelength at several different excitation wavelengths. Similarly, one could vary 

wavelength and time to form a WTM. Such data can provide qualitative and quantitative 

information like first-order data, but with the additional benefits described in Section 3.2.3. 

Second-order fluorescence instruments capable of measuring EEMs have been in use for 

some time. Commercial versions of these instruments are now common. Instruments for 

measuring WTMs on a nanosecond or shorter time scale are a more recent innovation and 

are not commercially available at this time. 

3.1.4 Third-order Instrumentation 

A three-mode array (3-array) of data called a time-resolved excitation-emission matrix 

(TREEM) combines the modes of excitation wavelength, emission wavelength, and time 

domain. Instruments which generate these data are usually "souped-up" versions of the 

second-order instruments which produce WTMs and WFMs, whose third-order descendant 

is the excitation-emission frequency array (EEFA). If time domain data are available, the 
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modification to scan both excitation and emission wavelengths is rather trivial. The 

ROST™ is a third-order instrument since it can collect TREEMs. 

The advantages of this type of data will be discussed in Section 3.3.2. 

3.1.5 Fourth-order Instrumentation 

Optical spectroscopic instruments designed to obtain fourth-order data are possible, but 

are of less obvious usefulness. A time-resolved excitation-emission-anisotropy instrument 

may be of interest to biochemists40 interested in the properties of fluorophores in living 

cells and tissue. 

3.2 Tensorial Calibration 

One seeks by calibration to establish a mathematical and statistical model of the 

relationship between experimental data and analyte concentration to estimate 

concentrations in an unknown sample. The usual procedure is to create a set of standards, 

with known concentrations, and measure the spectral response. The model is then created; 

and, in a prediction step, the concentration of the unknown is estimated. A linear 

relationship between the signal from the instrument and the desired parameter is desirable 

since it simplifies data analysis. The ability to determine concentrations of multiple 

analytes in mixtures and performance of the calibration model in the presence of 

interferences is influenced by the tensor order of the data. 

An nth-order instrument generates nth-order data by definition. Multiple samples of 

calibration data (standards) can be assembled into an (n + l)-order tensor. A calibration set 

of individually zeroth-order data, i.e., scalars, is a first-order tensor, i.e., vector; a set of 

first-order calibration data set represents a second-order tensor; etc. However, note that the 
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order of calibration follows from the order of the instrument and not from the order of the 

calibration data set. 

3.2.1 Zeroth-order Calibration 

Zeroth-order calibration is a very common feature in data analysis. The methodology is 

simple, the analysis is represented very well graphically, and it can easily be performed 

with a hand calculator. The statistics are also simple, well-defined, and easy to calculate. 

Unfortunately, there is also very little flexibility with zeroth-order calibration. One cannot 

use zeroth-order data to simultaneously analyze multiple analytes in a mixture. Any 

interference beyond a constant offset in the data distorts the model.5'6 Interferences present 

in the unknown sample, but not represented in the calibration set, cannot be detected in the 

prediction and will bias the parameter (concentration) estimate. A measurement which is 

highly selective for the target analyte is the most favorable case for zeroth-order calibration. 

3.2.2 First-order Calibration 

First-order calibration is both more powerful and more complex than zeroth-order 

calibration. Fortunately, there are several analysis algorithms whose mathematical and 

statistical properties have been extensively investigated. Among these are classical 

multivariate least squares (MLS), inverse least squares (ILS), principal component 

regression (PCR), and partial least squares (PLS), with PLS, PCR, and MLS being the most 

popular. First-order data allows for analysis of multicomponent mixtures with a maximum 

number of analytes equal to the number of elements in the spectral vector. Interferences 

can also be accommodated in the calibration model when using ILS, PLS., and PCR. 

ELS, PCR, and PLS are actually all inverse least squares techniques,5"7'41'42 in that they 

model concentration as a function of instrument response, opposite to the way analytical 
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expressions are usually presented. For example, Beer's Law is often written 

A = elc, (3.2) 

where A is the absorbance, e is the molar absorptivity or extinction coefficient, / is the path 

length of the solution, and c is the concentration. The inverse relationship may be written 

as 

c = bA, (3.3) 

where b is a model parameter which defines the inverse relationship. The advantage of this 

methodology is that the analysis is invariant with respect to the number of analytes in the 

model. The concentration of any spectrally active species may be determined 

independently of the others provided their spectral responses are modeled. In fact, in the 

method referred to as PLS1,42 each analyte in a multicomponent mixture is modeled 

separately, and predictions on the unknown mixture are conducted independently in turn. 

The analysis for each component treats the mixture as if it contains only one analyte and 

numerous interferences. The limitation in this case is that each interference present in the 

unknown must be included in the model or the prediction will be biased. However, the 

presence of interferences in the unknown but not in the model can be detected by 

comparing the unknown spectrum to the standard spectra. 

Data pretreatment is another area given much attention in the literature. Methods such 

as mean centering and variance scaling of the data are the two most often discussed. Mean 

centering is accomplished by subtracting the average value of the observations of a variable 

from each observation for that variable, i.e., 

f..(centered) = f..-f. (3.4) 
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where /.. is the fluorescence intensity of the ith sample at they'th wavelength and /. is the 

mean of the fluorescence intensities at the7th wavelength, i.e., 

N 

■ u 
f.=J • (3.5) 

J       N 

Mean centering accommodates data with a non-zero baseline. Scaling to unit variance is 

accomplished by 

f ..(scaled) = — 
V s. 

J 

(3.6) 

where s . is the standard deviation of the^'th wavelength, i.e., 

j. = 
J N-l 

2^1 

(3.7) 

Performing both mean centering and scaling to unit variance is referred to as 

standardization in statistical texts and autoscaling to unit variance in chemometrics 

literature. Standardizing data is usually performed on data which are measured on different 

scales with large range differences or if the units are not compatible. 

With the appropriate data pretreatment and the optimum algorithm, first-order 

calibration can be very powerful. But, as one might expect, even higher order data increase 

versatility. 
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3.2.3 Second-order Calibration 

The simplest second-order data follow a bilinear model, i.e., the second-order data array 

for a pure component can be decomposed into a dyad. If the data conform to the bilinear 

model, calibration yields a third-order tensor in the calibration model which is trilinear. 

Trilinear data are highly desirable since they allow for the following: (1) calibration with a 

single standard, (2) calibration and prediction in a single algorithm, (3) calibration and 

accurate prediction in the presence of interferences, (4) decomposition of the array to 

provide factor matrices containing the pure component spectra of the two spectral modes, 

and (5) the possibility of a unique decomposition of the array. This kind of second-order 

data is very powerful, especially in terms of the qualitative information that can be derived. 

Unfortunately, the mathematical analysis is complex, and the statistics are not well 

understood. The complexity is even greater if the second-order data are not bilinear. 

In cases where pure component second-order data are not bilinear, the method of 

analysis will depend more on the chemical and physical nature of the system. Some 

systems are amenable to analysis with restricted Tucker models which may, under certain 

constraints, result in a unique decomposition and pure component spectral profiles. 

Calibration in other non-bilinear systems by methods such as non-bilinear rank annihilation 

(NBRA)43 or residual bilinearization (RBL)44'45 may provide accurate predictions, but the 

ability to obtain qualitative information is lost in the former method. 

3.3 Profile Extraction 

When employing a profile extraction technique, one attempts to obtain the underlying 

first-order profiles from the data. These profiles may be pure component emission or 
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excitation spectra, time decay profiles, or relative concentrations in different samples. 

Profile extraction provides the qualitative information one can use to identify an unknown 

luminescent species in a solution. 

This type of analysis requires data in the form of an iV-array, with N > 2, formed by a 

collection of first-order data, e.g., first-order calibration data; or it could be second-order 

data from a single solution, e.g., an EEM. This type of analysis is usually labeled by the 

order of the data undergoing analysis rather than the order of the instrument, which makes 

sense because it conveys the most specific information concerning the capabilities of the 

analysis. Thus, profile extraction on an EEM, which is a 2-array, is called 2-mode profile 

extraction, and profile extraction on a TREEM is called 3-mode profile extraction. 

Profile extraction is necessary only if there is more than one fluorescing species in the 

sample. In cases where there is only a single fluorescing species, the analysis is trivial. As 

in calibration, profile extraction capability increases with the order of the data. 

3.3.1 Two-mode Profile Extraction 

Two-mode profile extraction is the most commonly applied factor analysis method. 

Perhaps this is so because there are so many ways to construct first-order data and many of 

the techniques have been around for a long time. Malinowski33 divides the methods of 

factor analysis into three categories: (1) abstract factor analysis (AFA), (2) target factor 

analysis (TFA), and (3) special methods. 

AFA involves transformations of sets of abstract factor matrices to obtain real factors. 

Abstract factors are obtained by eigenanalysis of the data matrix. This process is often 

called principal component analysis (PCA) or principal factor analysis (PFA). PFA 
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involves the decomposition of the data matrix, D, into two orthogonal matrices, R and C, 

often referred to as the scores and loadings matrices, respectively, with 

D = RC. (3.8) 

Malinowski33 describes a number of methods of decomposing D. One of the most popular 

ones is singular value decomposition (SVD), in which D is represented by 

D = USV. (3.9) 

The vectors in U are commonly called the left singular vectors and are the eigenvectors of 

DD'; those in V are the right singular vectors and are the eigenvectors of D'D; and S is 

the diagonal matrix of singular values, which are the square roots of the eigenvalues of 

DD' (and D'D). Equations (3.8) and (3.9) are related by setting R = US and C = V. 

The column vectors of R and C represent different amounts of variance explained by the 

decomposition. 

The term variance in multivariate analysis describes the amount of information 

contained in a matrix. It stems from the common use of the covariance matrix in 

multivariate analysis. If G is the Gramian association matrix formed from D, the total 

variance of D is the trace of G, i.e., tr(G). The total variance of a matrix is equal to the sum 

of the eigenvalues, X, of its decomposition, i.e., 

tr(G) = J>. (3.10) 

The magnitude of the individual eigenvalues represent the fraction of variance described by 

the respective eigenvectors. 

If those factors that account for the bulk of the variance are retained and the others are 

eliminated, the model in (3.8) can be reduced to abstract representations of the data 
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resulting from only real signal, not from noise. This objective leads to attempts to 

determine the array rank (see Definition A.28) of the matrix. The term pseudorank is also 

used, since a data matrix with experimental noise will almost always be full rank in the 

strictest mathematical sense. There are a variety of methods to deduce the number of 

significant factors in a decomposition of this type. 

The first two methods examine the error represented in the eigenvalues. Malinowski33 

describes a factor indicator function, that estimates which eigenvalues of the data originate 

from error (or from noise). If the eigenvalues, Xn, are ordered from largest to smallest (Xx 

being the largest), the indicator value for the nth eigenvector is given by 

IND(n) =      * 
(c-n) 

j=n+l 

r(c - n) 

K J 

(3.11) 

where c and r are the dimensions of the data matrix with c < r. The rank of the data matrix 

is the index n for which IND(n) is minimized. 

Malinowski46 also developed an F-test based on error represented in eigenvalues. The 

F-value is computed from 

X(/-7 + l)(c-; + l) 
F(l,c-n) = ^ *s_. (3.12) V }       (r-n + l)(c-n + l)    ^ K      ' 

j=n+l 

The eigenvalues are examined from smallest to largest. The index of the first eigenvalue 

whose F(l,c-n) exceeds the tabular value of F at the desired significance level is the 

estimated rank of the matrix. 
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Other methods examine the eigenvectors. The first-lag autocorrelation 

coefficient C(u), which has been used to separate signal eigenvectors from noise 

eigenvectors, can be calculated in the following way: 

c 

C(u) = ^  (3.13) 
uu 

where c is the dimension of the eigenvector, u. Proponents47 of this method assert that the 

eigenvectors corresponding to real signal will be smoother than those of the eigenvectors 

associated with noise. Thus, the signal eigenvectors possess larger values of C(u). An 

autocorrelation coefficient value of 0.5 has been suggested as a cutoff between real and 

error eigenvectors. 

After the number of factors has been determined, the selected factors are transformed 

with a transformation matrix, T. Transformation is straightforward. 

X = RT (3.14) 

and 

Y^T'C (3.15) 

are the transformations of R into X and C into Y. T is a square matrix whose dimensions 

equal the number of selected factors. Its elements are usually determined by iterative 

transformations until the vectors X and Y meet some desired criterion. The two basic types 

of transformations are orthogonal and oblique. Orthogonal transformations preserve the 

angular dependence between the original vectors. Oblique transformations allow variation 

of the angles between the vectors. 
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Orthogonal transformations are primarily used to find clusters or patterns in the data at 

hand. An example would be trying to establish a relationship between chemical 

composition and physical properties of lake sediment. However, an orthogonal 

transformation would not allow one to extract physically meaningful spectra from an EEM. 

Oblique transformations are another way to find clusters in data in order to identify 

correlated behavior. Based on minimization criteria alone, oblique rotations seldom 

reproduce identifiable spectra. TFA33 is a method which employs oblique transformations, 

although the transformations matrix is determined in an different way. Also, a constraint 

included in the transformation algorithm can produce good results. 

TFA attempts to extract meaningful factors one at a time by comparing transformations 

of the abstract factors to target factors, i.e., real factors one suspects are part of the data. In 

TFA, one generates a transformation vector, t, by fitting the target vector, x, to the 

abstract factor matrix in a least squares sense, i.e., 

t = R+x. (3.16) 

The predicted vector, x, is then obtained by 

x = Rt. (3.17) 

Equations (3.16) and (3.17)canbe combined as 

x = RR+x (3.18) 

to reveal that x is a least squares projection of x into the space spanned by the data as 

represented by the abstract factors. The predicted vector is subjected to a statistical test (F- 

test) to determine whether it is a valid real factor. TFA requires that the experimenter have 

some idea of what may be in the sample and to have target vectors on hand. Of course, if 
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one has a database, this should not be a problem, but for an unknown which may have 

spectra not in the database, this would pose a problem. 

Special methods of factor analysis encompass a wide variety of techniques. The most 

common are classified as evolutionary factor analysis (EFA) methods, which include 

modeling and self-modeling algorithms. EFA methods often employ constraints based on 

known physical properties of the measured parameters. A common constraint for 

wavelength-mode spectroscopic data is nonnegativity.48"52 Exponential decay is the usual 

constraint, or model, for time mode data in spectroscopy and kinetics.53"55 Unimodality and 

nonnegativity have been used as constraints in chromatography. Modeling and 

self-modeling methods of EFA lend themselves readily to analysis of EEMs and WTMs. 

Modeling methods can be used very effectively with fluorescence lifetime data. One 

simply uses the model in (2.11) to fit the time domain data. This technique was used by 

Knorr and Harris53 to extract lifetime and emission spectra from WTMs of two-component 

solutions. Fluorescence decay following pulsed excitation was measured at a number of 

wavelengths. The WTM, D, is represented as a bilinear array, 

D = WT\ (3.19) 

where W is the matrix of wavelength mode factors and T is the matrix of time mode 

factors. The convoluted decays were fit in a Simplex search algorithm using a single 

lifetime parameter for each fluorescing species. Following each iteration of the simplex 

algorithm, Knorr and Harris obtained a least squares fit of the time mode vector to estimate 

the wavelength factor matrix, i.e., 

W = DT(T'T)_1. (3.20) 
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Many practitioners54'55 now call this technique global analysis. It is finding extensive use 

in biochemistry, especially kinetics. Often, users will search parameter space for 

parameters in the time mode and the wavelength mode while employing the Marquardt56 

search algorithm, although a faster scheme would employ the Marquardt method and the 

least squares method as Knorr and Harris did. This allows a faster search of parameter 

space for the nonlinear part (lifetime) and a fast solution to the linear part (wavelength). Of 

course, if both modes are built on nonlinear models, such a scheme would not be possible. 

One could also use nonnegativity constraints on the values of the wavelength mode to force 

a realistic solution. 

Self-modeling methods impose constraints on the analysis without using any strict 

model for the behavior of the data. For example, constraining an oblique transformation of 

abstract factors to produce only positive values in the wavelength domain has been used to 

decompose fluorescence of several mixtures into recognizable spectra.57'58 

Self-modeling curve resolution is a popular form of this type of analysis. Setting 

constraints such as nonnegativity for spectra and using an alternating least squares 

algorithm have been used with success.48"52 As usual, the data matrix, D, is represented as 

the product of two factor matrices, A and B, i.e., 

D = AB'. (3.21) 

With some starting value for A, B is estimated by least squares, i.e., 

B' = A+D, (3.22) 

and any elements of B that are negative are set to zero. Then, A is estimated from B using 

A' = B+D', (3.23) 
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and any elements of A that are negative are set to zero. The process is continued until a 

termination criterion, such as minimum residual (see Appendix B), is reached. One could 

also employ a nonnegative least squares (NNLS) algorithm. 

EFA procedures are simple to understand, and they do not require prior knowledge 

about the components in the system. By following a simple model, e.g., exponential decay 

or imposing constraints and iterating, one can generate the real factors in many cases. 

However, there is a danger that one could get a result that is not the correct outcome as a 

consequence of what is called the rotation problem. 

The rotation (or transformation) problem is a direct result of (3.14) and (3.15). When 

operating on a 2-array, one can construct any transformation matrix and use it in (3.14) and 

(3.15). The result is that the decomposition of D is not unique. Even employing 

constraints such as nonnegativity does not ensure uniqueness.10 However, decomposition 

of trilinear 3-arrays does provide a unique solution. 

3.3.2 Three-mode Profile Extraction 

Third-order data that follow the trilinear model can be decomposed uniquely. Some of 

the algorithms for performing the decomposition employ eigenanalysis based procedures 

(EBP), while others use the parallel factors (PARAFAC) analysis. PARAFAC is also 

called alternating least squares (ALS) or, as we shall henceforth refer to it, three-mode 

alternating least squares (3M-ALS). 

The formal treatment of EBPs can be found in Appendix C. They are used to obtain a 

direct solution to the trilinear decomposition. There are variants of the EBP, but these deal 

mostly with the method of generating the data slices to be used in subsequent eigenanalysis. 

These methods are fast and produce good results on synthetic data and on real data with 
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small numbers of components and high S/N. This methodology has been applied to several 

types of spectroscopic data.10,36'39'59"62 However, studies have shown that the presence of 

noise can be problematic and that EBPs followed by 3M-ALS is necessary.10'63 

3M-ALS is an iterative approach to trilinear analysis. Its methodology is described in 

Appendix B. 3M-ALS usually produces good results even in the presence of noise. 

Unfortunately, the iterative approach can be very time consuming, requiring tens of 

thousands of iterations. In addition, there are some mathematical curiosities associated 

with 3M-ALS. 

Kruskal et al.64 reported a phenomenon they referred to as two-factor degeneracy. A 

two-factor degeneracy exists when two factors in a trilinear decomposition (1) are highly 

correlated in all three modes, (2) have very large and almost equal magnitudes, (3) have the 

overall effect of cancellation of one factor's contribution by the other. 

Another phenomenon that has been associated with 3M-ALS is multiple local optima 

(MLO).10 MLO appear when two starting sets of parameters yield different solutions to the 

3M-ALS sequence. Mitchell10 has suggested that MLO are a function of termination 

criteria in many cases. 

One way to expedite the convergence of the 3M-ALS algorithm with real spectral data 

would be to combine it with some of the techniques used in self-modeling curve resolution. 

By imposing a nonnegativity constraint, the algorithm may be forced to converge sooner. 

Three-mode nonnegative alternating least squares (3M-NNALS) may also help to resolve 

factors difficult to separate with 3M-ALS. Such an algorithm can easily be created by 

setting all negative elements in each mode to zero after obtaining a solution for that mode.65 
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The danger is that the procedure may not converge to the unique solution if the data are 

noisy. Another problem with 3M-ALS is that there are few promising rank estimation 

procedures available. 

It is ironic that while there are an abundance of rank estimation procedures for 

second-order data (specifically, 2-arrays), there is no mathematical formalism for 

determining the rank of a 3-array.12 Thus, rank estimation is very difficult with trilinear 

data. 

Often, TLD is performed on a 3-array for a number of trial ranks. The rank of trilinear 

data is determined by examining the resultant factors for each trial rank. When the true 

rank of the data is exceeded, resolutions should produce factors that model noise and will 

appear as noisy factors in all three modes. 
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4. PATTERN RECOGNITION 

From the time people are very young, they are very adept at pattern recognition. A baby 

easily recognizes his mother's voice and face. The phenomenal capabilities of the brain 

allow human beings to detect extremely subtle differences in sounds, images, odors, and 

textures, to name a few. 

For data analysis, it would certainly be beneficial to train a computer to recognize 

patterns and to place samples into different groups or classes. Unfortunately, this is a 

nontrivial task. What humans perform innately must be mathematically modeled for the 

computer to perform. Important characteristics about the items to be grouped must be 

identified and given a numerical value. These are called descriptors of the data. Also, the 

method one uses to group the data will depend on what information one has beforehand. 

Pattern recognition methods fall into two categories: supervised classification and 

unsupervised classification.66 Supervised classification, or simply classification, seeks to 

place items into one of two or more known groups. Unsupervised classification, or 

clustering, seeks to place items into groups based on similarities without association to 

previously established groups. To avoid confusion, henceforth, we will refer to supervised 

classification as classification and unsupervised classification as clustering. 

4.1 Classification 

Classification algorithms are developed based on specific rules for selecting 

membership in a class. While there are various rules for determining class membership, the 

ultimate goal is to place the unknown into the correct class. The quality of a classification 

rule is determined by the probability of misclassification.   The occurrence of noise makes 
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it unlikely that 100 percent classification accuracy can be obtained for experimental data. 

When the probability of misclassification is small, it is called an optimal classification rule. 

4.1.1 Optimal Classification - Bayes' Rule 

Several authors consider Bayes' rule to be the optimal classification rule.67,68 Bayes' 

rule, holds that one should place an item, whose data are in x, in the group with the highest 

posterior probability, P(G,.|x) (read as the probability of belonging to group G, given the 

data in x.) Thus, one wants to assign the item to the group i such that 

P(G,|X)>P(G;|X)     for all; *i. (4.1) 

P(GJ |X) is not easily obtained in practice, though it may be realized through Bayes' 

theorem, viz., 

,    , .       P(x|G.)P(G,) 

i 

where P(G,.) is the prior probability of occurrence, i.e., the probability of an item being a 

member of a group in a population (without regard to the descriptors used to classify it), 

P(x|G.) is the probability of acquiring the descriptors in x given the group G,. Thus, the 

item with the largest value for P(x|G. )P(G; ) will have the largest posterior probability, and 

the item would be assigned to the group which satisfies 

p(x|G. )P(G,.) > P(X|G . )P(G;)     for allj * i. (4.3) 

Assume the descriptors in the groups are normally distributed with mean \it and 

covariance Z,.. Then, 
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{2K)    Z, 

r 1 ' A 

9v    . .,    . x    ,-.,  > (4-4) 
v 2 y 

where /> is the number of descriptors in x and |Z(. | is the determinant of 2,.. It can be 

shown that one can generate the quadratic discriminant score, df, by combining the left 

side of (4.3) and (4.4) and eliminating constants that are the same for all populations,69 i.e., 

J^—lnl^l-^^x-^/s^x^.^ + lnPtG,.). (4.5) 

From (4.3), then, the item with descriptors, x, would be allocated to the group with the 

largest quadratic discriminant score. 

Further assume that the groups share a common covariance, E. It also can be shown 

that one can generate a linear discriminant score dt analogous to (4.5).69 However, a more 

convenient form for a linear discriminant is the Mahalanobis distance squared, 82, 

5?-(x-^jV1^-»*,)• (4.6) 

Allocation of the item with x to group G, is based on 

--8(
2 + lnP(G,)>--82. +lnP(G,.)     for all; *i.       (4.7) 

Note that if the prior probabilities are equal, the inequality in (4.7) reduces to allocation 

based on the minimum 6?. 

In practice, the population covariance (for the case of common covariances), E, and 

means, jx,, are not usually known. Instead, they are estimated from calibration sets of data 

giving the pooled covariance matrix, S^^, and the sample means, x(., respectively. 

These are calculated by 
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£(n'"1)si 
Spooled = ^"I ' (4-8) 

where L is the number of groups, n. is the number of items in the ith group. S,. is the 

sample covariance of the ith group, given by 

zK-x.)K_x.) 
S,=-^ p T. . (4.9) 

(n,-l) 

and x(. is the sample mean vector of the descriptors of the Mi item in the ith group, given 

by 

x(. =-|>fa.. (4.10) 

Optimal classification rules may include additional considerations.69 One of these is 

the "cost" of misclassification, i.e., a number representing the potential value of a 

misclassification; e.g., an engineer classifying a failing bridge as safe would be more costly 

than the reverse. 

4.1.2 Fisher's Method of Linear Discrimination 

One objective of pattern recognition schemes is to find those aspects of the data which 

best describe the group. Feature selection (also referred to as feature extraction) endeavors 

to map the original descriptors into a lower dimensional space while providing greater 

group separation. Canonical discrimination or Fisher's linear discriminant function,69 

which is a feature selection technique for discriminating among several groups, is described 

in capsule form here. 
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Assume a common covariance matrix for the different groups and sample estimates 

rather than population statistics. Define the overall mean vector x as 

L    n, 

I = J=LJ=!—. (4.H) 

1=1 

Define the sample between groups matrix B0 as 

B0=£(x,.-x)(x1.-x)'. (4.12) 
i 

This is a measure of the spread of the means of the groups. Next, define the sample within 

groups matrix W as 

W = iEK-x()(xfa-xl)
/. (4.13) 

i=i *=i 

W is a measure of the spread of the values within a group and is related to S^,^ by a 

constant. 

The linear discriminant functions are determined by finding the eigenvectors e of 

W-1B0.
68'69 This optimizes tr(W_1B0), a measure of class separability.68 This is 

accomplished by solving the eigenvalue equation, 

W_1B0e = Xe. (4.14) 

Since B0 has rank, L -1, there will be only r = min{p, L-l) nonzero eigenvalues, X. 

Thus, only the r corresponding eigenvectors need to be utilized to generate features or 

linear discriminants without losing class separation. Following eigenanalysis, the 

eigenvectors are each scaled by 
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ec = l, (4.15) 

such that 

* Spooled ' = 1 ' 

providing the coefficients 1 for a linear discriminant function. 

The inner product of 1 and x produces the sample linear discriminant, y. Using the 

coefficients corresponding to the largest eigenvalue, one generates the sample first 

discriminant, yx = Vx. With the/? by r matrix of the scaled significant eigenvectors L, one 

maps x into the new discriminant space, forming the sample discriminant vector y = L'x. 

If r < 3, the sample discriminants may be plotted against one another for each sample, 

showing the groups optimally separated in the discriminant space. 

Using all of the r significant eigenvectors provides for a classification scheme identical 

to (4.6) and (4.7). The Mahalanobis distance squared, 8f, is given by 

5f = (y-y1)
/(y-y,)=[L,(x-x,)nL'(x-x1.)]. (4.i6) 

4.2 Cluster Analysis 

Cluster analysis is a method of separating items into groups based on where the 

descriptors of the data place them in space. As with all of the techniques discussed so far, 

there are a multitude of clustering techniques. One fast method which is relatively easy to 

use and understand and provides an easily interpreted graphic is agglomerative hierarchical 

cluster analysis (HCA).69,70 

HCA operates by finding similarities (or dissimilarities depending on the measure one 

chooses to utilize) between items one at a time. It is an iterative process, taking N-l steps 
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for N items. Groups are formed as the items become linked together based on similarity. 

Each time a group is formed, it is treated as a single item. The measure of similarity at the 

time each group is formed becomes the level of that group in the hierarchy of groups. 

Thus, at the start of the process, there are N groups; and, at the end, there is only one, and 

the levels indicate the natural groupings. Each time a new group is formed, i.e., a linkage is 

formed, the similarities change to reflect the relationship ofthat group to the other groups. 

Three common ways of forming linkages between groups are (1) single linkage, 

choosing the two items within the different groups with the greatest similarity between 

them and assigning that as the new measure; (2) complete linkage, choosing the two items 

within the different groups with the least similarity; (3) average linkage, creating an 

average over all the items between the groups. The choice of method will depend on the 

data; however, examination of all three methods is recommended. Different measures of 

similarity should also be explored. 

The best measure of similarity will depend on the nature of the data under examination. 

A common measure of dissimilarity, perhaps useful as a first guide for all data, is distance. 

It is natural to associate objects based on how close they are in space. After all, that is the 

nature of groups. The distance between any two objects in coordinate space defined by 

their descriptor vectors, d(x,y), can be determined using a variety of metrics. A versatile 

one is the Minkowski metric,69,70 i.e., 

d(x,y) = VI I 
L\xi-yi\ 

Vm 

i=i 

(4.17) 

where p is the number of descriptors in x and y and m defines the specific metric. For 
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example, if m = 1, d(x,y) is the "city-block" or "Manhattan" distance, so called because it 

is analogous to measuring distance on a city grid while driving or walking. Using m = 2 

results in the familiar Euclidean or "straight-line" distance. Relating each object to every 

other object is a simple task from the matrix of distances. 

70 71 
One measure of similarity which has been used for spectra is the angle cosine '   (see 

Definition A.20). The angle cosine can take on values from -1 to 1, although with real 

nonnegative spectra, its values will only fall from 1 to 0. A high value of the angle cosine 

indicates more similarity: perfect agreement is indicated by the value 1. One notes a 

similarity to the familiar correlation coefficient, and the two are related. To make the 

similarity measure a minimum like distance , i.e., small value equals high similarity, the 

angle cosine is simply subtracted from one. The angle cosine has the added benefit that the 

magnitude of the individual vectors do not affect the correlation. 
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5. RESULTS AND DISCUSSION 

The objective of this research was to examine chemometric methods that can be applied 

to determine the concentrations of luminescent species in solutions and mixtures and the 

identity of composite mixtures from fluorescence data obtained by the ROST™ or a similar 

instrument. Specifically, we investigated the chemometric analysis of time-resolved 

multimode fluorescence data. The background literature in this area is almost nonexistent, 

particularly for analysis of actual data, and we felt that investigation of a wide range of 

approaches would yield greater progress than in-depth studies of narrower topics. Our 

research should be viewed more as establishing a path for future research and validation of 

chemometric approaches than as a detailed comprehensive study. 

We shall describe and discuss chemometric analysis of three data sets. The first two 

data sets were acquired for dilute solutions with only a few components. The first data set, 

Data Set One, was measured as a WTM-Concentration Array. The second set, Data Set 

Two, was measured as a TREEM. Our analysis goals in each case were to extract the 

spectral and temporal profiles for each luminescent species present in the solution. 

Data Set Three consists of WTMs of four different fuel products present at three 

different concentrations on three different soil matrices. Our analysis goals for these data 

were to extract profiles for the luminescent species in the fuels, to classify the fuels using a 

priori information on the fuel types, and to perform cluster analysis to group the fuels 

without the benefit of a priori information. 
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5.1 Profile Extraction of Simple Systems 

We defined a chemically simple system as one in which a small number of luminescent 

species are present at such sufficiently low concentrations that energy transfer effects are 

negligible. Such simple systems offer the best prospects for extracting chemically 

recognizable factors from the raw data. We made this assumption because simulated data 

utilized in most tests of chemometric methods resemble data from simple systems.10'36'39 

5.1.1 Analysis of Three-mode Data With an EBP, 3M-ALS, and 3M-NNALS 

We focus on several key aspects of trilinear analysis in this section. Trilinear 

three-mode data have the important inherent property that they can yield rotationally unique 

decompositions.12 In the analysis by an EBP or 3M-ALS, one can either estimate the rank 

of the 3-array before analysis or perform the analysis for various assumed array ranks until 

a satisfactory decomposition is obtained; the latter is the usual procedure. 

5.1.1.1 Data Set One: A WTM-Concentration Array 

The first sample evaluated contained fluorene, pyrene, and naphthalene in aqueous 

solution. These compounds were selected because their spectra exhibit only modest 

overlap along the wavelength mode and their lifetimes are well-separated. Solutions were 

prepared by successive additions of aliquots of stock solutions of the analytes to 3 mL of 

water in a standard 1-cm internal path fused silica cuvette. The stock solutions were 

prepared in spectral grade methanol at concentrations of 1 ppm (± 7%), 100 ppm (± 5%), 

and 100 ppm (± 5%), for fluorene, pyrene, and naphthalene, respectively. A total of seven 

solutions (including the water blank) were prepared according to the design in Table 5.1. 
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Contour plots of the WTMs that were measured for each of the seven solutions are 

presented in Figure 5.1. Note that fiber optics were not used for light delivery and 

collection in these experiments. The excitation source was the fourth harmonic (266 nm) 

of a Nd: YAG laser (Spectra Physic GCR-12). The fluorescence emission was collected at 

right angles to the excitation and imaged with a lens onto the entrance slit of a 320 mm 

focal length monochromator (ISA HR-320). Decay profiles were quantized at 2 ns 

intervals over a 400 ns range; and emission spectral profiles were collected at 10 nm 

intervals over the wavelength range 280 nm - 480 nm. Therefore, each WTM consists of 

201x21 or 4221 data elements. 

Table 5.1. Experiment matrix for Dal ta Set One 
SOLUTION Total Fluorene (ppb) Total Pyrcnc (ppb) Total Naphthalene (ppb) 

1 0 0 0 
2 0.33 0 0 
3 0.33 33 0 
4 0.33 33 33 
5 
6 

1.0 33 33 
1.0 67 33 

7 1.0 67 100 

5.1.1.1.1 Rank Estimation of Data Set One 

With the knowledge that the solutions were prepared by standard additions, it is easy to 

deduce that there are at least four components represented in the data. The water Raman 

scatter is the dominant feature for WTM 1 (that of the blank) in Figure 5.1, and the 

additions of analyte are evident in WTMs 2,3, and 4. The qualitative differences between 

WTM 4 and WTMs 5-7 are not nearly as easy to discern. A significant challenge for the 
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Figure 5.1. Contour plots of seven WTMs of Data Set One. Contours represent levels of 
equal fluorescence intensity. The weakest intensity is represented by the outermost contour 
in each WTM; it has a value of 0.025 (arbitrary units). Intensity increases by 0.025 for each 
successive contour. 

52 



chemometric methods, therefore, is to accurately predict the data ranks for individual 

WTMs and for the entire data set. 

S VD were tested on this data set. Since the S VD can be performed for each individual 

WTM, the rank estimation methods were applied to each individual WTM. Malinowski's 

factor indicator function and F-test use only the eigenvalues, whereas the eigenvectors 

serve as input if the rank is estimated from the first-lag autocorrelation coefficient. Note 

that first-lag autocorrelation coefficients can be calculated in both the wavelength-mode 

space and the time-mode space. An autocorrelation value of 0.5, suggested for a cutoff 

between real and error eigenvectors, was employed here. 

The solutions in Data Set One were constructed to contain one, two, or three added 

chemical components, and the water Raman signal represents a fourth component. The total 

number of components, which we refer to as the a priori (correct) data rank, is shown in 

Table 5.2 along with the rank estimations by the various methods. By inspection of Table 

5.2, it is clear that the autocorrelation coefficient along the time mode is a totally unreliable 

rank predictor at the recommended 0.5 cutoff value. The agreement between a priori and 

estimated rank improves substantially when the cutoff value is increased to a higher value, 

e.g., +0.9; but at this stage, there is no strong justification for choosing a different cutoff 

value. The factor-indicator method and the F-test, which are based on eigenvalues, 

accurately predict the rank for WTMs 3 through 7, but overestimate the rank for WTMs 1 

and 2. In fact, both methods actually give a higher rank for WTMs 1 and 2 than for the 

other WTMs even though the number of chemical components is definitely less. The 

wavelength-mode autocorrelation estimate exhibits reverse behavior. It agrees with the a 
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priori rank for WTMs 1 and 2, but underestimates the rank by one for all of the solutions 

that contain four components. We speculated that the fact that the Raman scatter spectrum 

consists of a single non-zero intensity value at the wavelength interval used in the data 

collection is the reason. 

Table 5.2. Rank estimates for Data Set One 
SOLUTION Rank1 

(with Raman) 
1ND2 F-tcst3 

(5 %) 
C(u(X))4 C(u(t))4 

1 0(1) 5 4 1 7 
2 1(2) 4 4 2 8 
3 2(3) 3 3 2 17 
4 3(4) 4 4 3 17 
5 3(4) 4 4 3 18 
6 3(4) 4 4 3 18 
7 3(4) 4 4 3 17 

S(WTMs) 3(4) 5 5 4 18 
Rank is equal to the number of emitting species; parenthetical value includes Raman 

2 Malinowski's factor indicator. 
3 Malinowski's F-test for significance above the 5% level. 
4 Autocorrelation coefficient, values above +0.5. 

Unfortunately, each of these methods, as applied normally, estimates the rank for a 

2-array. This could cause a problem if a luminescent species is present in one solution, but 

not another; then the rank estimate of the 3-array would be deficient. For example, 

consider the estimate of the rank of a 3-array consisting of two WTMs where each WTM 

contained fluorescence from five luminescent species, but there were only four species 

common to both WTMs. In such a case, the rank of each WTM could be correctly 

estimated as four, but the rank of the 3-array would be underestimated. We have therefore 

tested the 2-array rank estimation methods to a compressed 3-array obtained by adding all 

of the individual WTMs. The results are contained in the last row of Table 5.2. Note that 
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the method cannot provide a correct rank estimate if the rank of the 3-array is lower than 

the smaller dimension of the matrix. This is not a problem here since the smaller dimension 

of the new matrix obtained by summing the WTMs is 21. 

This WTM summation procedure appears to cause the factor indicator function and the 

F-test to overestimate the rank by one. The wavelength-mode autocorrelation estimate is 

equal to the number of components in solution plus Raman scatter, but this may be 

fortuitous. Once again, the time-mode autocorrelation is poor using the +0.5 cutoff. 

5.1.1.1.2 TLD of Data Set One 

We next tested TLD of Data Set One for assumed ranks of two through six. Only 

selected results are shown here. Note that TLD treats the entire data set, which consists in 

this case of the seven WTMs shown in Figure 5.1. The first try at decomposition used the 

EBP of Sanchez and Kowalski,36 and the rank four decomposition results are presented in 

Figure 5.2 along the emission wavelength, fluorescence decay time, and concentration 

modes. Factors Two and Four have negative intensity components in the wavelength and 

time modes, which are physically impossible; but the factors can nonetheless be reasonably 

assigned as follows: Factor One - naphthalene; Factor Two - fluorene; Factor Three - 

pyrene; Factor Four - water Raman scatter. 

Next we tried 3M-ALS on these same data using the factors from the EBP as starting 

vectors. The convergence criterion for the 3M-ALS analysis sequence was a difference in 

consecutive norm of residuals less than 1 x 10~10 (this criterion was used for all calculations 

in this thesis). The algorithm provided a converged solution in 104 iterations. The factors 

for the rank four 3M-ALS decomposition are displayed in Figure 5.3. They improve upon 
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Figure 5.2. Rank 4 TLD of Data Set One using EBP of Sanchez and Kowalski. 
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Figure 5.3. Rank 4 3M-ALS determined factors for Data Set One. 
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the factors from the EBP since the negative-going features have been almost completely 

eliminated from the spectral and time-mode factors. The time mode of Factor Four (water 

Raman scatter) exhibits a slight bimodal character. 

Three-mode NNALS (3M-NNALS) was also executed starting with EBP factors and 

with the same convergence criterion. The series converged after 93 iterations, a minor 

reduction compared with 3M-ALS. The results of this calculation are in Figure 5.4. Not 

surprisingly, the 3M-NNALS factors are practically indistinguishable from the factors 

presented in Figure 5.3. 

Fluorescence lifetimes were computed with the phase plane method of Demas25 from 

the time-mode profiles shown in Figure 5.4. The Raman scatter from WTM 1 was used as 

an estimate of instrument response function, E{t). The results were 7 ns for fluorene, 40 

ns for naphthalene, and 140 ns for pyrene, which compared favorably with independent 

determinations of 7 ns, 36 ns, and 127 ns, respectively, for these species in air-saturated 

water.    The fluorescence spectra also correlated well with the pure component spectra at 

this resolution. 

The rank 5 decomposition provided an intriguing aspect to the analysis. A contaminant 

from an unknown source appeared as a fifth factor. The results of the EBP and the 

3M-NNALS for the additional factor are displayed side-by-side in Figure 5.5. It is not clear 

at this time what the source of the fifth factor is since it only appears in one WTM, at 

approximately 440 nm in WTM 5 in Figure 5.1. The lifetime of this contaminant is very 

short, approximately 2 ns. 
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Figure 5.4. Rank 4 3M-NNALS determined factors for Data Set One. 
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The 3M-ALS sequence required 854 iterations to converge for the rank 5 resolution 

when starting with the factors from the EBP, whereas the 3M-NNALS required only 116 

iterations to converge, starting from the same factors. 

The other resolutions, ranks three and six, all produced factors recognizable as the three 

analytes after 3M-ALS or 3M-NNALS. The rank three resolution coalesced the fluorene 

and Raman factors, which are the most similar of the four chemical components in 

wavelength and in fluorescence decay time. In the TLD for assumed rank six, all of the 

factors from the rank five TLD were obtained. In addition, a small magnitude, 

structureless, short lifetime noise factor arose, which is the expected result when a 

decomposition of rank higher than the actual array rank is sought. 

5.1.1.1.3 Comments on TLD of Data Set One 

When confronted with relatively simple data, such as that contained in Data Set One, 

the EBP does a very good job of extracting the profiles of the major components in all three 

modes. 3M-ALS is still needed to make further refinements in the profiles, evidenced by 

the improvement in the fluorene factor following 3M-ALS. The EBP's ability to extract 

weaker components is not as good as 3M-ALS. One may even have overlooked the 

mysterious fifth component if 3M-ALS had not been performed. 

3M-NNALS, on the other hand, did not represent a significant improvement over the 

3M-ALS result with respect to the quality of the factors. Nonetheless, 3M-NNALS is 

beneficial because it provides a faster route, sometimes substantially faster, to convergence. 

It is not clear why the rank five 3M-ALS solution took so long to converge, but the 

3M-NNALS solution apparently avoided that problem. 
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3M-NNALS is undoubtedly more efficient than 3M-ALS at avoiding physically 

meaningless regions of hyperspace. 3M-ALS allows the solution to wander through 

hyperspace in search of a minimum. We have observed that quite often two corresponding 

profiles for a factor (time and wavelength, say) will be inverted. It is possible that the 

phenomenon of "swamps" described by Mitchell and Burdick63 can be avoided by 

3M-NNALS; surely, it precludes two factor degeneracies. 

Rank estimation is another area requiring comment. Considering the Raman scatter and 

the contaminants as independent factors, then Data Set One constitutes a rank five 3-array. 

The best estimates given for the rank seem to be from the factor indicator function and 

Malinowski's F-test performed on the summed WTMs. Other than the estimate for 

Solution 1, there were no rank five estimates for the WTMs. Even Solution 5, where the 

contaminant was most evident, the rank estimate was "low." Summation provides some 

smoothing or signal averaging of the data, which may be enough to allow recognition of 

weaker factors, particularly those associated with processes such as solvent Raman 

scattering, which is represented in all the WTMs of the data array. 

5.1.1.2 Data Set Two: ATREEM 

Data Set Two was measured on a single aqueous solution that contained fluorene, 

phenanthrene, naphthalene, and carbazole. The solution was prepared by adding small 

amounts of stock solutions of the individual components in methanol to 3 mL of water in a 

quartz cuvette until a suitable signal level was reached. A TREEM consisting of four 

WTMs at excitation wavelengths of 287 nm, 290 nm, 295 nm, and 300 nm was measured. 

The data interval and range were 2 ns over 250 ns along the time mode and 2.5 nm from 
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305 nm to 405 nm along the wavelength mode. Other experimental conditions were 

identical to those used for the acquisition of Data Set One. The WTMs that comprise the 

TREEM for Data Set Two are presented in Figure 5.6. 

Figure 5.6 reveals that there is much less variation from one WTM to another in 

comparison to Data Set One. Note that the variation in these WTMs arises solely from 

differences in the spectral response due to changes in the excitation wavelength. The 

concentrations of the fluorescing species do not change from one WTM to the next. One 

might expect the estimation of the rank of this 3-array to be more difficult than that of Data 

Set One, given the similarity of the WTMs. 

5.1.1.2.1 Rank Estimation of Data Set Two 

Rank estimation for Data Set Two was performed in an identical manner as Data Set 

One. The results of these analyses are presented in Table 5.3. 

Based on a priori knowledge of the solution, the best estimates of rank for this data are 

given by the wavelength-mode autocorrelation and Malinowski's F-test. The factor 

indicator function was not a reliable estimate of rank estimation for any of the WTMs in 

this data set. 

Table 5.3. Rank estimates for Data Set Two. 
Excitation 

Wavelength (nm) 
Rank1 TND2 F-test3 

(5%) 
C(u(?l))4 C(u(t))4 

287 4 6 4 3 10 
290 4 9 4 3 8 
295 4 8 4 3 9 
300 4 5 4 4 11 

E(WTMs) 4 10 5 4 10 
Rank is equal to the number of emitting species 
Malinowski's factor indicator. 
Malinowski's F-test for significance above the 5% level. 
Autocorrelation coefficient, values above +0.5. 
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Figure 5.6. TREEM of Data Set Two. Contours represent levels of equal fluorescence 
intensity. The weakest intensity is represented by the outermost contour in each WTM; it 
has a value of 0.1 (arbitrary units). Intensity increases by 0.1 for each successive contour. 
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Raman scatter was not considered as a contributor to these data. Because the excitation 

wavelength was varied, the water Raman scattering would appear at a different position in 

each WTM. If the Raman scatter were included, the actual rank would be higher by a value 

of four. However, since the concentrations of the fluorophores was elevated to optimize 

the signal, the Raman scatter was diminished substantially by competition for incoming 

photons. The intensity of the Raman scatter decreases as the concentrations of the 

luminescent species are increased. This behavior can be observed in Figure 5.4, Factor 

Four, Solution-mode. 

5.1.1.2.2 TLD of Data Set Two 

EBP decomposition was performed on Data Set Two in the same manner as for Data 

Set One. Decompositions were performed for assumed ranks two through six. Complex 

(imaginary) factors resulted in one set of the rank three factors and in both sets of the rank 

four, five, and six factors (Note: this EBP produces two sets of factors, one corresponding 

to eigenanalysis on the G matrices, the other corresponding to eigenanalysis on the 

transpose of the G matrices). Complex factors can arise during eigenanalysis on 

nonsymmetric square matrices (see Appendix C), which is generally the case in the 

approaches required here (see equations C.12 and C.13). Li et al.12 devised an algorithm to 

eliminate complex eigenvalues during EBPs based on similarity transforms. 

The results of the rank four EBP utilizing the similarity transform method of Li et at.12 

are displayed in Figure 5.7. None of these factors can clearly be assigned to any one 

species. They appear to be linear combinations of the individual component spectral and 

time profiles, that is, they are rotated together. Each of the various rank resolutions 
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Figure 5.7. EBP determined factors for Data Set Two. 
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Figure 5.7. Continued. 
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resulted in factors similar to the rank four resolution. 3M-ALS is obviously required in this 

case. 

The rank four 3M-ALS decomposition of Data Set Two is exhibited in Figure 5.8. The 

respective factors from Figure 5.7 were used as starting vectors for 3M-ALS. Convergence 

occurred after 3846 iterations. The improvement in the quality and appearance of the 

factors is noteworthy. 

Based on the emission wavelength-mode and time-mode factors, Factors One through 

Four in Figure 5.8 can assigned as fluorene, carbazole, naphthalene, and phenanthrene, 

respectively. Fluorescence lifetimes are 6 ns, 11 ns, 30 ns, and 32 ns for Factors One 

through Four, respectively. They compare favorably with 7 ns for fluorene in water,   15 ns 

for carbazole in ethanol,73 36 ns for naphthalene in water,30 and 33 ns for phenanthrene in 

water.30 Lifetimes were calculated with the phase plane method with a separate 

measurement of scattered laser excitation to provide E(t). 

The emission wavelength-modes for Factor Three and Factor Four indicate that the two 

are rotated together. Note that the short wavelength portion of Factor Four has a very 

similar structure to that in Factor Three. The similarity of the lifetimes and the effects of 

experimental noise are each likely contributors to the vector rotation. Even if the 3M-ALS 

process is allowed to continue until stricter termination criteria are met, the result is 

essentially the same. The need for constraints during the 3M-ALS sequence is more 

evident for Data Set Two than for Data Set One. 

3M-NNALS was performed on the data using the factors in Figure 5.7 as starting 

points. The sequence converged quickly, taking only 337 iterations. Figure 5.9 contains 
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Figure 5.8. 3M-ALS determined factors for Data Set Two. 
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Figure 5.9. 3M-NNALS determined factors for Data Set Two. 
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the rather impressive results. Our assignments for Factors One through Four are 

naphthalene, phenanthrene, carbazole, and fluorene, respectively; the computed lifetimes 

are 34 ns, 29 ns, 10 ns, and 5 ns, respectively. Note that the factors have not been 

renumbered from those given by the algorithms to better match them up with real factors. 

The 3M-NNALS factors are more realistic than the EBP factors and are also an 

improvement over the 3M-ALS result since the rotation of the naphthalene and 

phenanthrene factors is eliminated. The emission mode 3M-NNALS factors are compared 

with fluorescence spectra measured on a spectrofluorimeter (Spec 2T2 Fluorolog) in Figure 

5.10. The agreement is excellent, particularly since the data are not corrected for detector 

response in either case. 

The excitation wavelength modes have received little attention thus far. This is because 

there were so few measurements in this mode; also the WTMs were not corrected for laser 

power variation as a function of excitation wavelength. This mode provided variations in 

fluorescence intensity for the luminescent species, although we acknowledge the potential 

of excitation wavelength as an additional identifying agent. 

Resolutions for the other assumed ranks were less satisfactory than the rank four 

results. The rank three resolution produced factors similar to Factors One, Three, and Four 

in Figure 5.8. The residual hypersurface of the rank three 3M-NNALS decomposition 

apparently contained MLO. Some starting vectors led to two reasonable factors while 

others led to only one. This is not too surprising since the rank three resolution is rank 

deficient. 
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The 3M-NNALS rank five decomposition produced reasonable factors for fluorene, 

phenanthrene, and carbazole. The naphthalene factor appeared to be rotated with the 

phenanthrene factor. However, the decomposition did not generate the expected noise 

factor. Instead, a fifth factor emerged with a lifetime and spectrum similar to carbazole. 

The rank six decompositions failed to converge after more than eight hours of 

computational time for both 3M-ALS and 3M-NNALS. 

5.1.1.2.3 Comments on Data Set Two 

Data Set Two represents a real challenge for three-mode decomposition, especially for 

EBP and 3M-ALS. The rank four decomposition by 3M-NNALS is highly encouraging. 

Meaningful profiles were recovered in the spectral and time domains, and the number of 

iterations required to reach convergence was reduced over the unconstrained procedures. 

In all probability, the most significant impediment to a good 3M-ALS solution is the 

presence of real factors with very similar fluorescence lifetimes. The prevention of factor 

rotations, such as those which occurred between the naphthalene and phenanthrene factors, 

underlies the potential of 3M-NNALS and similar analyses, such as restricted Tucker 

models.37 

The complex solutions to the EBP analyses point to what may be an instrumental 

challenge in the acquisition of this type of time-domain data. Sanchez and Kowalski 

suggested that complex solutions in the EBP results are a consequence of deviations from 

trilinearity. We have observed that the dye laser pulse duration can vary with wavelength. 

If it does, then the fluorescence decay profiles of components whose lifetimes are not much 

longer than the laser pulse duration are similarly affected, and the WTMs are distorted. One 
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way to overcome this problem in the future would be to deconvolve the data before 

three-mode decomposition, for example, by the exponential series method for fitting 

multiexponential decays.74 Alternatively, one could attempt modifications to the dye laser 

itself to make the pulse durations as constant as possible. 

Predictions of the ultimate potential for rank estimation from TREEMs is difficult with 

the limited data presented here. A priori information and the quality of the rank four 

3M-NNALS decomposition suggest that the data are truly rank four. However, the 

emergence of an apparent fifth factor in the rank five decomposition and the abundance of 

complex EBP solutions hint at a rank ambiguity. The estimate of rank five from the F-test 

may be further support for such a conclusion. Even so, the F-test operating on the summed 

WTMs still provides a reasonable place to start. 

It is unclear why the rank six decomposition failed to converge. This behavior is 

unusual, especially for the 3M-NNALS, and we cannot offer an explanation at this time. 

5.1.2 Global Analysis of Three-mode Data 

The power of global analysis lies in its ability to simultaneously model some physical 

observable across a number of independent measured data sets. Thus, it provides excellent 

opportunities for signal averaging and can describe a large set of data with relatively few 

parameters. 

5.1.2.1 Global Analysis of Data Set One 

Data Set One was introduced in Section 5.1.1.1. There is a particular aspect of this data 

set which allows it to be easily analyzed using global analysis. The Raman scatter in the 

first WTM provides an excellent system response function, E(t), for convolution. Since 
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global analysis essentially performs curve fitting using the convolution of E(t) and the 

exponential decay of the fluorophore, y(t), collecting a high quality E(t) is crucial. 

Global analysis was conducted using the Levenberg-Marquardt search algorithm which 

is packaged in the Optimization Toolbox for Matlab®. Convolutions were performed by 

numerical integration of equation 2.11 using a polynomial integration program written in 

this laboratory. After each set of lifetime parameters was estimated, a least squares fit of 

the data was performed to extract the solution-mode and wavelength-mode parameters. 

The 3-array was unfolded as an , X(yjt) matrix (see Appendix B) with the /-mode 

representing time, they-mode representing solution, and the &-mode representing emission 

wavelength. Termination was based on reaching a minimum in the norm of the residual 

matrix. 

To model these data based on five components, global analysis was conducted using a 

zero lifetime and four nonzero lifetimes. The excitation profile was used without 

convolution as a zero lifetime component to accommodate scatter. Unfortunately, a global 

analysis solution to a five-component problem could not be reached. Attempts generally 

resulted in two very similar lifetimes, usually at the extremes. Consequently, solution of 

the least squares problem leading to the solution-wavelength-mode was poorly defined (i.e., 

if A represents the time-mode matrix, (A'A)~ was nearly singular), and it would have the 

properties similar to a two-factor degeneracy in 3M-ALS. A four-factor global analysis 

solution was pursued, in light of the failure of the five-factor model. 

The results of a four-factor (a zero lifetime and three nonzero lifetimes) global analysis 

are exhibited in Figures 5.11 through 5.14. Components represented by the factors are in 
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Figure 5.11. Factor One global analysis result for Data Set One. The upper plot is the least 
squares estimate of the solution-wavelength-mode factors. The lower plot is the instrument 
response function. 
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Figure 5.12. Factor Two global analysis result for Data Set One. The upper plot is the least 
squares estimate of the solution-wavelength-mode factors. The lower plot is the 
convolution of the instrument response with the decay for a 6.2 ns lifetime. 
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Figure 5.13. Factor Three global analysis result for Data Set One. The upper plot is the 
least squares estimate of the solution-wavelength-mode factors. The lower plot is the 
convolution of the instrument response with the decay for a 36.4 ns lifetime. 
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Figure 5.14. Factor Four global analysis result for Data Set One. The upper plot is the 
least squares estimate of the solution-wavelength-mode factors. The lower plot is the 
convolution of the instrument response with the decay for a 133 ns lifetime 
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order: Raman scatter, fluorene, naphthalene, and pyrene. The lower portion of the figures 

contains the time-mode part, and the upper portion contains the least squares estimate of 

the solution-wavelength-mode. In Figure 5.11, in the region of Solution Five, one can see 

the contribution of the contaminant. It can be seen to a lesser degree in the same region in 

Figure 5.12. Taken together, the two signals can be fit to a lifetime of 2.8 ns, almost 

identical to the 3M-ALS result. Why this factor could not be extracted is not clear. 

Perhaps 3M-ALS and 3M-NNALS are more robust techniques for extracting factors that 

make relatively small contributions to the data. 

The results for the remaining factors are quite good. The lifetimes for the fluorene, 

naphthalene, and pyrene, 7 ns, 36 ns, and 133 ns, respectively, are in good agreement with 

other measurements performed in this laboratory (see Section 5.1.1.1.2). They differ from 

those obtained from 3M-ALS because global analysis enforces the model in equation 2.11 

during the fitting process, while 3M-ALS fits the data to the trilinear model without regard 

to lifetime. 

Another noteworthy point about these fits is the behavior of the scatter or zero-lifetime 

factor. As one moves from Solution One to Solution Seven in the top portion of Figure 

5.11, there is an increasing negative contribution of the zero-lifetime factor. This effect 

becomes markedly more prominent when a discrete convolution is performed in place of a 

numerical integration. This effect has been observed in this laboratory on several 

occasions. 

Commonly, the problem is treated as a time shift phenomenon and is easily 

accommodated in this way. However, it has also been observed in this laboratory that a 
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small time shift has the same effect as a short lifetime contribution. One possible cause of 

this behavior is the numerical treatment of the data; another is that the response of PMT 

may be nonlinear on the rising edge. 

Carefully comparing the time-mode profiles in Figure 5.4 with those in Figures 5.11, 

5.13, and 5.14, a small difference in the rising edges can be detected. The global analysis 

profiles consistently rise faster than the 3M-NNALS profiles. This may be a contributing 

factor to the problem of the negative signal contribution; and it may have the same cause. 

All of these matters are under investigation. 

5.1.2.2 Global Analysis of Data Set Two 

Efforts to perform global analysis on Data Set Two using the techniques described in 

Section 5.1.2.1 were unsuccessful. Three was the maximum number of lifetimes which 

could be determined. Attempts to obtain four lifetimes consistently failed due to 

difficulties identical to those encountered in the five-lifetime analysis of Data Set One. 

The three lifetime global analysis did not produce clearly recognizable factors. It also 

was extremely sensitive to starting point. This result was not too surprising, given the 

results of the rank three decomposition from 3M-ALS and 3M-NNALS. 

Considering the success of the rank four 3M-NNALS solution for this data, we wrote 

and performed a three-mode global analysis algorithm. The algorithm searched lifetime 

parameter space in a nonlinear fashion, however, for each new lifetime, the 

wavelength-mode and solution-mode were solved by a two-mode NNALS routine, rather 

than solving them together. 
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The four-lifetime three-mode global analysis produced excellent results. Both spectral 

and temporal profiles were nearly indistinguishable from the results in Figure 5.9. 

Lifetimes extracted were 5 ns, 11 ns, 35 ns, and 38 ns, for the fluorene, carbazole, 

phenanthrene, and naphthalene factors, respectively. 

This new method of global analysis has produced encouraging results. Its major 

drawback is that it requires extensive iteration. 

5.2 Profile Extraction of Fuel Fluorescence 

An evaluation of the performance of a prototype of the ROST™ system in comparison 

to a nitrogen laser-based system designed for environmental analysis was performed as part 

of the DoD Site Characterization and Analysis Penetrometer System (SCAPS) program. 

The testing was conducted at the Naval Command, Control Ocean Surveillance Center, 

Research, Development, Test and Evaluation Division (NRaD) during February, 1994. 

During the evaluation, numerous data sets were acquired to assess the capability of the two 

fluorescence systems to detect and identify fuels on soil matrices and to quantitate 

contamination levels. The following four fuels were selected for the test on the basis of 

their widespread distribution at military sites throughout the country: diesel fuel-marine 

(DFM), summer grade diesel fuel (DF), unleaded gasoline (UG), and JP-4 jet aircraft fuel 

(JP4). 

In one part of the evaluation, participants were challenged to test the ability of the 

systems to identify unknown fuels. Hence, four fuels were placed onto three different soil 

matrices in different concentrations. Soil matrices also were chosen for their diversity; the 

first was sand, nonabsorbent with a light background; the second was from Columbus AFB, 
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MS, (CAFB) and was highly absorbent and nonreflective; the third was from China Lake 

NAS, CA, (CLNAS) and was also absorbent and nonreflective. Individual fuel-soil 

mixtures were loaded into sets of soil sample holders fitted with a sapphire window. The 

loaded sample holders rotated during measurement to minimize photolysis while spectra 

were simultaneously measured with the ROST™ prototype and the nitrogen laser systems. 

Spectral responses of the 12 combinations of the four fuels on the three soils at a 

concentration of 3000 ppm served as a calibration set. As a blind test of the capabilities of 

the two systems, 24 unknowns were prepared in concentrations of 1000 or 10,000 ppm and 

measured. 

The fluorescence data collected by the ROST™ prototype were acquired for 290 nm 

excitation. Twenty-one emission wavelengths evenly spaced between 300 nm and 500 nm 

were monitored. Decays were measured at 1 ns intervals over a 120 ns range. Fiber-optic 

light delivery and collection occurred over a 50 m long silica-clad silica two-fiber probe. 

The core diameter was 365 |im. A representative WTM for each of the fuel products is 

displayed in Figure 5.15. 

The data were corrected in the time-domain for the wavelength dependence of the 

transit time of light in silica optical fiber, tfo, using75 

t/0=^, (5.1) 

where / is the optical fiber length, and v is the group velocity of light in silica given by: 

d(»(A))   ' 
v = c 

^"A-  dA 
(5.2) 
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Figure 5.15. WTMs of four fuels on soil. Contours represent levels of equal fluorescence 
intensity. The weakest intensity is represented by the outermost contour in each WTM. 
Each WTM here has 15 contours, however, not all have the same intensity values. This 
effectively scales the WTMs for display purposes. 
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where c is the speed of light in vacuo, and n(X) is the index of refraction for silica. The 

index of refraction was determined with the dispersion equation:76 

n{X) = 
,      cfi        c3A

2        cA1 

l + ^r - + ^r—- + 
A2-, X-cl    A2-c, 

(5.3) 

where X is wavelength, and the constants, c,-, are 

c, = 0.6961663, 

c2 = 0.0684043, 

c3 = 0.4079426, 

c4 =0.1162414, 

c5 = 0.8974794, 

and c6 = 9.86161. 

Data points are lost at the lower and upper time limits due to the correction. There were 107 

time increments after correction. Figure 5.16 contains the same data as in Figure 5.15 after 

the correction for group velocity time shift. Note that the data in Figure 5.16 have a more 

"square" appearance than Figure 5.15. 

After the evaluation, it was noted from the soil background measurements that several 

of the sapphire windows contained fluorescent impurities (vide infra), a conclusion that 

was verified by direct measurements on the windows themselves. A WTM contour plot for 

one of the fluorescent sapphire windows is displayed in Figure 5.17. Unfortunately, no 

record was kept of which of the 18 different sapphire windows was used for any particular 

measurements made during the week-long exercise. 

The data were prepared for multimode analysis by arranging the 12 WTMs of the 

known fuel-soil mixtures, the 24 WTMs of the unknown fuel-soil mixtures, and four 

background WTMs (three with and one without window fluorescence) into a 3-array of 
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Figure 5.16. Time shift corrected WTMs of four fuels on soil. Contours represent levels of 
equal fluorescence intensity. The weakest intensity is represented by the outermost contour 
in each WTM. Each WTM here has 15 contours, however, not all have the same intensity 
values. This effectively scales the WTMs for display purposes. 
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dimension 21 by 107 by 40. An alternative analysis scheme, which will be discussed in 

Section 5.2.3, reduced the data order to a 2-array by integration along the time-mode. 

Integration was accomplished simply by summing along the time-mode of the WTMs. 

Since the time intervals are evenly spaced, this procedure is identical to a trapezoidal rule 

integration and results in a 21 by 40 matrix of time-integrated spectra. 
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Figure 5.17. Background fluorescence including contaminated sapphire window. 

5.2.1 Rank Estimation of Fuel Data 

Rank estimation was carried out on the fuel fluorescence data in the same manner as 

applied to the two previous data sets. Rank was also estimated from the matrix of 

time-integrated spectra. Analyses were performed on the data both with and without the 

four background WTMs to evaluate their effect. They are presented in Table 5.4; results on 
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the individual WTMs have been omitted for brevity, and the time-mode autocorrelation 

estimate was not pursued. 

Table 5-4- Rank estimates for fuel fluorescence 
Data 

Arrangement1 
Number of 

WTMs2 
IND3 

F-test4 

(5 %) 
C(u(*))5 

X(WTMs) 36 7 4 3 

j(wm)dt 36 15 5 3 

2(WTMs) 40 6 4 3 

j(WTM)dt 40 .1         |         4 4 

Indicates whether only 36 fuel WTMs or 4 background WTMs were included 
Malinowski's factor indicator. 

* Malinowski's F-test for significance above the 5% level. 
Autocorrelation coefficient, values above +0.5. 

Based on the results for the two previous data sets, it is tempting to concentrate on the 

rank estimates given by the F-test and the wavelength-mode autocorrelation. These 

indicate a rank of around four for this data. 

The factor indicator function appears to be unstable with respect to the form of the data. 

This is probably a result of the change in the dimension of the data matrix, since the 

dimensions are used in the computation of the indicator values. The summed WTMs 

matrix is 21 by 107, while the time-integrated matrix is 21 by 40 or 21 by 36. The trend for 

the factor indicator function is to increase as the larger dimension is decreased. This may 

be a weakness of the factor indicator function. As Malinowski46 pointed out, the factor 

indicator function is an empirical function and should be used with caution. 
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In light of the fact that the fuels are known to be complex mixtures with many different 

PAHs, the results presented in Table 5.4 are surprising. It is possible that there is only a 

small number of emitter groups and the individual compounds within the groups have very 

similar emission spectra and lifetimes. Other considerations include the level of 

experimental noise, species interactions, matrix effects, and group velocity correction errors 

for the fiber optics. All of these factors may contribute to the rank estimate being far lower 

than expected for these data. 

5.2.2 TLD of Fuel Fluorescence 

Mitchell and Burdick77 have proposed classifying mixtures via trilinear decomposition 

of three-mode data. For example, consider a 3-array consisting of WTMs of many different 

fuel samples. Two of the modes from the trilinear decomposition would represent 

wavelength and fluorescence decay time, and the third mode would then represent a 

mixture or fuel-type mode. The relative proportions of the factors in the class-mode could 

be used as descriptors in a classification scheme, thereby exploiting the second-order 

advantage. One could not only classify the fuel, but also identify its major components. 

To obtain a unique decomposition for 3-mode data, the matrices which form the 

underlying triple product of the data must meet the condition of Equation B.40, namely that 

the sum of the fc-ranks of the matrices must be greater than or equal to two times the rank of 

.the 3-array plus two. Thus, if even one of those matrices has two identical columns, a 

unique decomposition is not possible with 3M-ALS. 

Is it likely that the fuel data collected have two identical or proportional columns in the 

factor matrices that make up the 3-array? Since the fuels are complex mixtures containing 
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tens or even hundreds of fluorescent species and since there are only four fuels, it is likely 

that the mixture-mode factor matrix has fc-rank of one. Therefore, we expect that the 

3-array cannot be uniquely decomposed with 3M-ALS. Even considering the matrix effects 

of the different soils, which might contribute to variability among the fluorescence from 

different species, the number of fluorophores is likely too large to obtain a unique 

decomposition. 

Another consideration in analyzing fuel emission is the possibility of nonlinear 

spectroscopic effects arising from interactions between species. Some of the potential 

sources of deviations from trilinearity for individual fluorophores are quenching, energy 

transfer, and reabsorption of fluorescence. 

The more factors that are sought, the longer is the required computational time. 

Trilinear decomposition of this data set by 3M-ALS or 3M-NNALS took as long as a day 

(using a 120 MHz Pentium® computer and employing strict convergence criteria) for 

assumed rank of ten or greater, which is impractically long for many applications. Given 

these complications, what can be expected or gained from a trilinear decomposition here? 

Eastwood   has suggested that the sources of fluorescence in complex mixtures, such as 

fuels, could be grouped into classes of fluorophores. The fluorescence spectral and lifetime 

data offer some encouragement. For example, single ring compounds typically emit in the 

short wavelength range, say 280 nm to 300 nm, and their lifetimes are also usually short in 

air-saturated aqueous solution. Naphthalene and its derivatives have intermediate 

wavelength emission (300 nm - 360 nm) and lifetimes (ca. 25-35 ns) emission. And the 

higher molecular weight PAHs tend to emit at even longer wavelengths; however, the 
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trends in lifetime are less obvious for the PAHs. Perhaps this is the best that can be 

expected from fluorescence data of fuel products in view of the results from the simple 

solutions. Recall that in the four-component case of Data Set Two, we had to employ 

3M-NNALS to obtain a satisfactory result. 

If the goal of the decomposition is extraction of the fluorescence factors of all species 

contributing to the signal, trilinear decomposition is probably not a realistic approach; and 

more traditional analytical methods such as GC-MS or HPLC should be considered. 

However, if the goal is to find factors which adequately describe the fuels while taking 

advantage of the third-order nature of the data and generate good descriptors in the process, 

then 3M-NNALS may prove useful. 

Given the previous rationalizations, we attempted to keep the rank of the decomposition 

as low as possible, but large enough to model the data and the sapphire window 

interference. Resolutions of ranks three through eight were obtained using EBP 

decomposition. All resulted in complex (imaginary) factors. The similarity transform 

method was employed to eliminate the complex factors. The resulting factors had generally 

large negative amplitude contributions with little, if any, physical significance. A factor 

clearly associated with the window fluorescence did not emerge from the analysis. 

The EBP computations were followed by 3M-ALS. The results from the unrestricted 

3M-ALS were also not very encouraging. The calculations tended to produce two or three 

very similar factors. Although these did not always meet the definition of a two-factor 

degeneracy, they were usually highly correlated in all three modes and were physically 

meaningless. A factor indicative of the sapphire window fluorescence could be identified 
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in some resolutions, but not in others. Computation times were very long, as greater than 

50,000 iterations were required to reach convergence in several cases. 

3M-NNALS was performed for ranks three through seven using the results of the 

similarity transform method decomposition as starting vectors. The results from these 

calculations appeared more like real factors. However, rather than having smooth 

asymptotic transitions to the baseline, the mode features often tended to get zeroed out or 

"cut off as they reached zero intensity or concentration for many factors. This is an 

unfortunate artifact of the non-negativity algorithm. On the other hand, the fact that none 

of the decompositions performed with this method required over 300 iterations for 

convergence is encouraging. 

The rank five resolution by 3M-NNALS that produced the smallest residual is 

presented in Figure 5.18. Unfortunately, 3M-NNALS (at least in its current 

implementation) is very susceptible to trapping in local minimum solutions. At least two 

different resolutions were determined for the rank five case. Both resolutions produced 

reasonable representations of the window contribution, and the other factors were similar. 

Three background samples which obviously contained window fluorescence were 

analyzed separately, also. The background WTMs with window fluorescence were trivial 

to analyze and proved to be rank one, based on the appearance of rank one through three 

3M-NNALS resolutions. The factor for the interference is displayed for comparison in the 

last frame of Figure 5.18. 

The rank five resolution was chosen from among all of the decompositions because it 

provided the best match to the window factors obtained from the 3M-NNALS analysis of 
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Figure 5.18. Rank five 3M-NNALS decomposition factors for fuel fluorescence. 
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Factor Five Window Fluorescence 
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just the background WTMs themselves. Clearly, the fifth factor of the rank five resolution 

represents the interference. It highly correlates with the background resolution in both the 

wavelength and time modes; the angle cosines of the overlap are 0.9973 and 0.9984 in the 

respective modes. The results for the higher rank resolutions are similar to those of rank 

five. The rank four resolution did not provide a clear identification of the window factor. 

It is unfortunate that the features appear to get "cut off' for a number of the factors. 

Nevertheless, the window fluorescence can be identified and removed from each sample 

WTM by subtracting the triple product of the vectors for the three modes of Factor Five in 

Figure 5.18 from the 3-array. 

Sample-mode Factors One through Four were used as descriptors in a classification 

scheme (see Section 5.2.3). 

5.2.3 Analysis of Fuel Fluorescence With Self-modeling Curve Resolution 

A fundamental question about the multimode data generated by a ROST™ or similar 

system is whether all this information is really needed. Certainly first-order data, in the 

form of spectra, can be collected very efficiently using a charge coupled device (CCD) or 

photo diode array (PDA) detector. The time-integrated data created during rank estimation 

represents such first-order data. Such data can be utilized to compare the merits of higher 

order data with lower order data. 

The time-integrated data were subjected to a self-modeling curve resolution (SMCR) 

scheme using a two-mode NNALS algorithm. Decompositions were obtained for ranks 

three through seven. The wavelength-mode results, in many cases, were similar to those of 

the wavelength-mode from 3M-NNALS. However, we found that the extracted factors 
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were very sensitive to starting points. An important aspect of the analysis was extracting 

the sapphire window component. In many cases of profile extraction here, a single window 

factor did not emerge from the calculation. This was the case for our rank five minimum 

residual result. 

5.2.4 Comments on TLD of Fuel WTMs 

3M-NNALS is the only feasible way to analyze WTMs from complex mixtures such as 

fuels. EBP and 3M-ALS were not able to obtain physically meaningful factors from these 

data, and the latter was far too time intensive. 

Assignments of the factors to groups of compounds, such as naphthalenes and 

substituted naphthalenes, etc., is premature; and further analysis of fuel fluorescence in 

needed. Performing 3M-NNALS on simulated fuel mixtures which are chemically and 

spectroscopically similar to fuels, but of known composition, may aid in this process. Rank 

estimation performance should also benefit from this type of research. 

The true significance of the TLD technique is its ability to identify and remove 

interferences from the data and generate descriptors of the fuels. 3M-NNALS was able to 

isolate a factor closely resembling the sapphire window interference in the rank five 

resolution, an accomplishment that two-mode analysis could not match. How successfully 

and completely the technique removed the window factor cannot be characterized for these 

data because the true amount of window interference is not known. But in the analysis that 

follows, we can speculate on its performance based on classification results with and 

without the window component. More work needs to be performed in this area also. 
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5.3 Classification of Fuels Using Fluorescence Data 

One element of the field laser performance evaluation was to determine the ability of 

the instruments to classify the 24 unknown fuel-soil mixtures using the 12 known fuel-soil 

mixtures as a training set. 

To separate the fuel groups, we used Fisher's discriminant function, described in 

Section 4.1.2, to generate linear discriminants with which to classify the unknowns. 

Multivariate normal distributions and equal covariance matrices for the four fuels were 

assumed. Prior probabilities were equal under the conditions of the evaluation. Although 

the classification algorithm presented in Section 4.1.2 is reasonably straightforward, the 

challenge is to find the most accurate descriptors of the fuels within the data. 

In addition to using the mixture-mode factors, descriptors for the classification 

algorithm were obtained in several other ways. One method used the mixture-mode 

elements from three-mode. Another method used the mixture-mode PFA factors 

(computed using SVD) of the time-integrated spectra as descriptors. Each of the methods 

used was evaluated on its ability to predict fuel type of the 24 unknowns. Normalization of 

the descriptor vectors was performed in all cases to minimize the effects of concentration 

and the soil matrix. The normalization consisted of scaling the vector comprising the 

descriptors of each fuel to unit length. However, the stage of the classification process at 

which normalization was performed depended on how the descriptors were obtained. 

5.3.1 3M-NNALS Mixture-mode Factors as Descriptors 

The elements of a 3M-NNALS mixture-mode factor represent the contribution of the 

corresponding wavelength-time dyad to the WTMs. Thus, the third element of 
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mixture-mode Factor One in Figure 5.18, for example, is the contribution of the 

wavelength-time dyad of Factor One needed to model the WTM of the third mixture 

(which happens to be a DFM on sand combination). Each element of each mixture-mode 

factor is a descriptor of one of the fuels (or window). A rank five decomposition yields 

five descriptors for each fuel; a rank six decomposition, six; and so forth. 

Table 5.5 contains the classification results utilizing all of the factors, including the 

window factors, from 3M-NNALS decomposition for ranks four through seven. 

To eliminate the window fluorescence from the data, the obvious window factor was 

identified for each rank decomposition, and its mixture-mode factor was omitted as a 

descriptor. The descriptor vectors were normalized and used in classification. The 

classification results with the window contributions omitted are in Table 5.6. 

The classification rates were good for all rank decompositions, with and without the 

window factors. In all cases of misclassification, the mixtures corresponded to the lowest 

fuel concentration (1000 ppm) in the evaluation samples. In fact, the most consistently 

misclassified mixture, Unknown M, was a low concentration of JP4, the weakest emitter of 

the fuels, and was mixed on the CAFB soil, which was the poorest soil matrix in terms of 

fluorescence response. Support for this last statement comes from the fact that 10 of the 12 

misclassifications in Table 5.5 occurred for CAFB soil samples; in Table 5.6, eight of the 

10 misclassifications occurred on the CAFB soil. Unknown M had a very weak emission 

and the poorest S/N of any sample in the study. 

We suspect that the second most misclassified mixture, Unknown T, has a very large 

sapphire window interference in proportion to its total fuel emission. This is also the case 
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Table 5.5. Classification of unknown fuels using 3M-NNALS factors 
Unknown1 Four 

Factors 
Five 

Factors 
Six 

Factors 
Seven 

Factors 
Actual 
Fuel 

Cone, 
ppm (xlO"3) 

Soil 
Type 

A JP4 JP4 JP4 JP4 JP4 1 CLNAS 

B DF DF DF DF DF 10 CLNAS 

C UG UG UG UG UG 10 Sand 

D DF DF DF DF DF 10 CAFB 

E UG UG UG DFM DFM 1 CAFB 

F DFM DFM DFM DFM DFM 1 CLNAS 

G DF DF DF DF DF 1 CAFB 

H DFM DFM DFM DFM DFM 10 CLNAS 

I DFM DFM DFM DFM DFM 10 CAFB 

J UG UG UG UG UG 1 Sand 

K DF DF DF DF DF 1 CLNAS 

L JP4 JP4 JP4 JP4 JP4 10 CLNAS 

M UG UG UG UG JP4 1 CAFB 

N JP4 JP4 JP4 JP4 JP4 1 Sand 

0 DF DF DF DF DF 1 Sand 

P DFM DFM DFM DFM DFM 1 Sand 

Q UG UG UG UG UG 10 CAFB 

R DFM UG DFM UG UG 1 CLNAS 

S UG UG UG UG UG 10 CLNAS 

T DF UG DF DF UG 1 CAFB 

U JP4 JP4 JP4 JP4 JP4 10 Sand 

V DFM DFM DFM DFM DFM 10 Sand 

W DF DF DF DF DF 10 Sand 

X JP4 JP4 JP4 JP4 JP4 10 CAFB 

Total 
Correct 

20 
83% 

22 
92% 

20 
83% 

22 
92% 

Unknown s A-X com ;spond to \ lixtures 17- 40 in Figui ■e5.18. 
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Table 5.6. ( 
window fac 

Classification of unknown fuels using 3M-NNALS factors omitting suspected 
tor 

Unknown1 Four 
Factors2 

Five 
Factors2 

Six 
Factors2 

Seven 
Factors2 

Actual 
Fuel 

Cone. 
ppm(xl0"i 

Soil 
Type 

A JP4 JP4 JP4 JP4 JP4 1 CLNAS 

B DF DF DF DF DF 1.0 CLNAS 

C UG UG UG UG UG 10 Sand 

D DF DF DF DF DF 10 CAFB 

E DFM DFM UG DFM DFM 1 CAFB 

F DFM DFM DFM DFM DFM 1 CLNAS 

G DF DF DF DF DF 1 CAFB 

H DFM DFM DFM DFM DFM 10 CLNAS 

I DFM DFM DFM DFM DFM 10 CAFB 

J UG UG UG UG UG 1 Sand 

K JP4 DF DF DF DF 1 CLNAS 

L JP4 JP4 JP4 JP4 JP4 10 CLNAS 

M UG UG UG UG JP4 1 CAFB 

N DF JP4 JP4 JP4 JP4 1 Sand 

0 DF DF DF DF DF 1 Sand 

P DFM DFM DFM DFM DFM 1 Sand 

Q UG UG UG UG UG 10 CAFB 

R UG UG UG UG UG 1 CLNAS 

S UG UG UG UG UG 10 CLNAS 

T UG DF DF DF UG 1 CAFB 

' U JP4 JP4 JP4 JP4 JP4 10 Sand 

V DFM DFM DFM DFM DFM 10 Sand 

w DF DF DF DF DF 10 Sand 

X JP4 JP4 JP4 JP4 JP4 10 CAFB 

Total 
Correct 

21 
88% 

22 
92% 

21 
88% 

22 
92% 

1 Unknowns A-X correspond to 
2 The number of factors used in 
component was removed. 

Mixtures 17-40 in Figure 5.18 
classification is one less indicated since the window 
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for Unknown E, although to a lesser degree. 

The integrated fluorescence intensities versus unknown mixture are displayed in Figure 

5.19. The estimated window fluorescence has been removed from the fluorescence before 

integration using the rank five 3M-NNALS window factor. Included in Figure 5.19 are the 

integrated window fluorescence estimates for each mixture. Note the intensities and 

window components of the misclassified mixtures. It is obvious here which unknowns 

suffer from the greatest interference. 

In general, fuel fluorescence intensity follows the trend: DFM is slightly stronger than 

DF, which is stronger than UG, which is much stronger than JP4. The trend for soil effects 

based on fuel fluorescence intensity on the respective soil is fuel-sand intensity is much 

greater than fuel-CLNAS soil mixture intensity, which is greater than fuel-CAFB soil 

intensity. 

It is surprising and disappointing that the number of misclassifications does not 

improve more when the suspected window component is omitted from the set of 

descriptors. A disturbing aspect of this analysis is that three classifications, Unknowns K 

and N in the Four Factor column and Unknown T in the Five Factors column, went from 

correct with the window descriptor included to incorrect when it was omitted. It is also 

difficult to establish a pattern for misclassification in the presence of window fluorescence. 

Window fluorescence may make UG appear as DFM, as in the case of Unknown R, or the 

reverse, as in the case of Unknown E. 

Apparently, the two conditions, weak emission and large proportional window 

fluorescence contribution to total signal, are the most significant causes of 
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misclassification. However, it is not clear yet that the results of Table 5.6 are the best 

which can be achieved. 

Conceivably, the bilinear model employed here has failed to model subtleties in the 

data which are important in classification. This may be a fault with using the 3M-NNALS 

factors as descriptors, since they are not the true least squares estimates of the data. It is 

possible that PFA, with its orthonormal basis set spanning the true factor space, may be 

able to generate better descriptors for the weaker intensity fuel mixtures. 
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Figure 5.19. Unknown fuel fluorescence and sapphire window fluorescence. Integrated 
fluorescence intensities for unknown mixtures are represented by o's. Integrated window 
fluorescence intensities are represented by + signs. 
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5.3.2 Three-mode PFA Mixture-mode Factors as Descriptors 

The rank five sapphire window factor, Factor Five of Figure 5.18, was subtracted from 

the WTMs of the 12 training mixtures and 24 unknowns. The resulting 3-array was 

analyzed using the TUCKER1 (eigenanalysis on the unfolded 3-array without performing 

ALS), three-mode PFA. 

The mixture-mode eigenvectors were multiplied by their corresponding eigenvalues and 

used as descriptors. Before discrimination and classification, the descriptors were 

normalized as in the Section 5.3.1. The results for various numbers of PFs are presented in 

Table 5.7. 

The results of the classification here are excellent. One interpretation that can be made 

is that the factors from the 3M-NNALS do not adequately represent the data. This is 

probably a result of substantial deviations from trilinearity of the fuel WTMs. However, 

the trilinear model seems to be adequate to fit and extract the sapphire window 

fluorescence. 

The TUCKALS3 algorithm was also employed to generate descriptors with identical 

results. 

5.3.3 Principal Factors of Time-integrated Spectra as Descriptors 

The WTMs of the 12 training mixtures and the 24 unknowns were time integrated both 

before and after correction for group velocity shift of the fiber optics. The data were 

arranged into a 36 by 21 matrix and subjected to PFA using SVD such that the left singular 

vectors spanned the row space (i.e., the mixture-mode space) of the matrix and the right 

singular vectors spanned the column space (i.e., the wavelength-mode space) of the matrix. 
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Table 5.7. Classification of unknown fuels using three-mode PFA mixture-mode PFs 
Unknown 3 PFs1 4 PFs1 5 PFs1 6 PFs1 Actual Fuel 

A JP4 JP4 JP4 JP4 JP4 

B DF DF DF DF DF 

C UG UG UG UG UG 

D DF DF DF DF DF 

E DFM DFM DFM DFM DFM 

F DFM DFM DFM DFM DFM 

G DF DF DF DF DF 

H DFM DFM DFM DFM DFM 

I DFM - DFM DFM DFM DFM 

J UG UG UG UG UG 

K DF DF DF DF DF 

L JP4 JP4 JP4 JP4 JP4 

M JP4 JP4 JP4 JP4 JP4 

N JP4 JP4 JP4 JP4 JP4 

0 DF DF DF DF DF 

P DFM DFM DFM DFM DFM 

Q UG UG UG UG UG 

R UG UG UG UG UG 

S UG UG UG JP4 UG 

T UG UG UG UG UG 

U JP4 JP4 JP4 JP4 JP4 

V DFM DFM DFM DFM DFM 

W DF DF DF DF DF 

X JP4 JP4 JP4 JP4 JP4 

Total 
Correct 

24 
100% 

24 
100% 

24 
100% 

23 
96% 

Used rank five 3M-NNALS decomposition to remove sapphire window (interference) 
factor. 
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Descriptors were generated by taking the product of the left singular vector matrix with 

the singular value (diagonal) matrix. Then, they were entered into the linear discrimination 

and classification algorithm. The capsule results of the analyses are contained in Table 5.8. 

Table 5.8. Number of correct fuel classifications with PFA of time-integrated spectra 
Spectra 
Source1 

3 PFs 4 PFs 5 PFs 6 PFs 

Raw 
WTMs 

20 21 22 21 

Corrected 
WTMs 

20 21 23 23 

Spectra generated from summing (time-integrating) WTMs before correcting for group 
velocity shift of fiber optics (Raw WTMs) and after correction (Corrected WTMs). 

The misclassified fuels from these analyses were all low concentration. The same fuels 

were misclassified in the three PF and four PF cases. This was not the case with the five 

PF and six PF cases. Table 5.8 is not intended to illustrate a problem with time integration 

of spectra or the use of PFA on spectra or the group velocity shift correction of the data. 

Indeed, the spectra in the two cases differ only minutely due to losses of information on the 

edges of the time-mode. The PFs also have only minor differences even up to rank six. 

Table 5.8 points out a possible problem with the classification algorithm. When the 

sample size of the standards (training set) is small compared to the number of descriptors, 

the covariance matrix estimates, S(- of equation 4.8, can become highly variable (and 

unstable upon inversion) and result in poor classification. The number of standards per 

class here is three. When the number of descriptors exceeds three, the classification may be 

suffering. The results in the PF 5 and PF 6 columns of Table 5.8 may be a manifestation of 

this phenomenon. 
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The discrepancy illustrated in Table 5.8 might have another cause. Recall that the rank 

estimation for the matrix of integrated spectra was four or five. Eigenvectors greater than 

four or five may be noise eigenvectors and disrupt the classification. Although the variance 

accommodated by the higher eigenvalues is very small, their effect may be more prominent 

on the weaker fluorescing mixtures. 

After removing the window factors as in Section 5.3.2, the WTMs were time integrated 

and factor analyzed with SVD. The significant factors were then used in the discrimination 

and classification algorithms to classify the unknowns. Table 5.9 contains the 

classifications based on the 3M-NNALS, rank five window removal. 

The results in Table 5.9 are superb. Apparently choosing to integrate and using 

orthogonal factors in the classification scheme was an excellent choice. Since these results 

are perfect, the inference can be made that classification of these fuels does not require 

three-mode data. However, the analyses required to get to this point speak for themselves 

concerning the three-mode nature of the data. 

Subtraction of 3M-NNALS window factors other than the rank five decomposition 

were also performed. The classification results using PFs from the time-integrated spectra 

in these cases were not as good as the rank five window removal case. However, they were 

as good or better than the 3M-NNALS mixture-mode results presented in Table 5.6. Again, 

deviations from trilinearity in the data give advantages to the orthogonal factors to 

represent the data. Clearly though, the choice of window-mode factor is very important; 

thus, so is the choice of number of factors in the 3M-NNALS model. 
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Table 5.9. Classification of unknown fuels using PFA of time-integrated si pectra 
Unknown 3 PFs1 4 PF s1 5 PFs1 6 PFs1 Actual Fuel 

A JP4 JP4 JP4 JP4 JP4 

B DF DF DF DF DF 

C UG UG UG UG UG 

D DF DF DF DF DF 

E DFM DFM DFM DFM DFM 

F DFM DFM DFM DFM DFM 

G DF DF DF DF DF 

H DFM DFM DFM DFM DFM 

I DFM DFM DFM DFM DFM 

J UG UG UG UG UG 

K DF DF DF DF DF 
L JP4 JP4 JP4 JP4 JP4 
M JP4 JP4 JP4 JP4 JP4 
N JP4 JP4 JP4 JP4 JP4 

0 DF DF DF DF DF 

P DFM DFM DFM DFM DFM 

Q UG UG UG UG UG 

R UG UG UG UG UG 
S UG UG UG UG UG 
T UG UG UG UG UG 
U JP4 JP4 JP4 JP4 JP4 
V DFM DFM DFM DFM DFM 
W DF DF DF DF DF 

X JP4 JP4 JP4 JP4 JP4 

Total 
Correct 

24 
100% 

24 
100% 

24 
100% 

24 
100% 

1 Used rank fh re 3M-NNALS decomposition to obtain sapp lire window (ii iterference) 
factor. 

Analogous classification was performed on the two-mode data after subtraction of the 

window factors generated with SMCR. The results were an improvement over those in 

Table 5.8, but, in general, not as strong as in Table 5.9. Subtraction of the rank four SMCR 

window factor resulted in one perfect classification using four PFs. 
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5.3.4 Comments on Fuel Classification 

This data set was particularly difficult to deal with because of the interference. 

Certainly, greater care could have been exercised in the selection of the sapphire windows 

used for the measurement. On the other hand, this type of problem is probably highly 

representative of those that will be encountered during in situ analysis, whether at a 

hazardous waste site or in human tissue. The effort expended here should facilitate 

analyses on actual unknowns. 

Correct classification of the fuels was possible after removing the interference and 

modeling the data with orthogonal factors to generate descriptors. Major considerations of 

classification were the method of profile extraction, selection of window factor, choice of 

descriptors, and the limited size of the training set. 

Based on these results and the results presented in Section 5.2, we believe that the best 

approach to profile extraction of fuel fluorescence is 3M-NNALS. While 3M-NNALS is 

susceptible to MLO, it is less so than SMCR. 

Future studies should be conducted to include larger training sets with more fuel types. 

They should include various levels of oxygen to examine the effects of fluorescence 

quenching on profile extraction and classification. 

5.4 Cluster Analysis 

Cluster analysis could be extremely useful in distinguishing different types of 

luminescent materials, such as fuels or tissue types, without prior knowledge of types of 

materials present. Such a scheme could be applied to a contaminated site containing 
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multiple fuels or to a collection of tissue specimens containing healthy and diseased tissues 

or tissue from different species. 

The goal of this section is to evaluate the viability of HCA to perform clustering of 

fuels. In addition, we would like to find the best measure of similarity to be employed in 

the HCA algorithm. 

As in most of the classification schemes used in this work, HCA was performed on data 

corrected for the sapphire window contribution by subtracting the window factor from the 

3M-NNALS rank five decomposition. The HCA algorithm described in Section 4.2 was 

performed with Matlab® using a program written in this laboratory. Numerous approaches 

were taken for both generating of the similarity (dissimilarity) matrices and forming 

linkages during clustering. 

Clustering was performed using all of mixture-mode PFs employed in the 

classifications of Section 5.3 as descriptors of the fuel data. Both "city block" and 

Euclidean metrics were tested as dissimilarity measures. Single, complete, and average 

linkage methods were investigated for forming linkages. All of these descriptors, the 

3M-NNALS factors, PFs from time-integrated spectra, and PFs from three-mode PFA, 

performed clustering very well. 

The average linkage dendrogram of the descriptor-vector-normalized 3M-NNALS 

factors, excluding the sapphire window factor, is displayed in Figure 5.20. The Euclidean 

metric was used to generate the distance matrix. Using a distance of around 0.4 as a group 

separation cutoff, only Unknowns T and M are incorrectly grouped. In fact, they do not 
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Figure 5.20. Average linkage dendrogram of fuels using 3M-NNALS factors. Normalized 
mixture-mode factors from rank five 3M-NNALS decomposition of fuels with sapphire 
window (interference) factor omitted. Similarity measure is Euclidean distance between 
descriptor vectors. The known spectra are indicated by their fuel abbreviations and the 
unknowns by their letter designators. 
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group with any of the major fuel groups. This is not too surprising given that these same 

two unknowns were misclassified using these descriptors (see Table 5.6). 

Figure 5.21 portrays the average linkage dendrogram of the fuels using the first four left 

singular vectors of the 36 by 21 matrix of time-integrated spectra multiplied by their 

respective eigenvectors. These are the same data that were used in the 4 PF column of 

Table 5.9. With a distance cutoff of 0.2, only Unknown M is not grouped with any major 

group. Otherwise, the groupings are excellent. 

PFs from three-mode PFA, used in 4 PF column of Table 5.7, were used to produce the 

average linkage dendrogram in Figure 5.22. Here the groupings are more ambiguous, 

although still very good. If one chooses a distance cutoff of 0.5, one of the JP4 standards 

and Unknown A are excluded from the JP4 grouping. Choosing a cutoff of 1.0 lumps the 

UG and DF fuels into a single group. Unknown M is incorrectly grouped into the UG 

cluster in any event. 

When dealing with spectral vectors, the angle cosine is one of the more intuitive 

measures of similarity because it indicates the proximity of two vectors in space and is 

therefore a measure of correlation. The angle cosine calculation has normalization built 

into it; only the direction of the vector is considered, and the magnitude is unimportant. 

For these reasons, the remainder of this section will deal with clustering in which the angle 

cosine (or its value subtracted from unity) is taken as the measure of similarity. 

Figure 5.23 contains the single linkage dendrogram using one minus the angle cosine of 

the spectra as the measure of similarity. There is excellent separation of the groups based 

upon these criteria. Only one mixture, Unknown M, did not group as expected, which is 
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Figure 5.21. Average linkage dendrogram of fuels using PFA of time-integrated spectra. 
First four mixture-mode PFs of normalized spectra. Sapphire window (interference) factor 
removed using rank five 3M-NNALS. Similarity measure is Euclidean distance between 
descriptor vectors. The known spectra are indicated by their fuel abbreviations and the 
unknowns by their letter designators. 
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Figure 5.22. Average linkage dendrogram of fuels using three-mode PFA factors. 
Normalized mixture-mode factors. Sapphire window (interference) factor removed using 
rank five 3M-NNALS. Similarity measure is Euclidean distance between descriptor 
vectors. The known spectra are indicated by their fuel abbreviations and the unknowns by 
their letter designators. 
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Figure 5.23. Single linkage dendrogram of time-integrated fuel spectra. The angle cosine 
of the spectral vectors subtracted from unity was used as the measure of similarity. 
Sapphire window (interference) factor, obtained from rank five 3M-NNALS 
decomposition, was removed before integration. The known spectra are indicated by their 
fuel abbreviations and the unknowns by their letter designators. 
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not surprising based on the results in the preceding section. One can easily see four groups 

using a similarity index of approximately 0.015 as a cutoff. 

Based on the similarity index values in Figure 5.23, one might get the mistaken 

impression that the spectra are almost identical except for very subtle variations. This 

arises because the single linkage method finds the minimum distance or similarity between 

groups as they are established. In reality, the angle cosines (correlations) between different 

fuel spectra can be quite small, as low as 0.45 for DFM and JP4. Figure 5.23 does correctly 

indicate the general relative similarity between the fuel spectra, i.e., UG and DF have the 

most similar spectra, and DFM is more similar to UG and DF than JP4. 

Figure 5.24 contains the complete linkage dendrogram for the same data depicted in 

Figure 5.23. Note that the groups have greater separation than in the single linkage model. 

Unknown M also does not appear to be as well separated from the other groups. These 

effects result from the choice of maximum distance or similarity between groups as 

opposed to the minimum in the single linkage method. The movement of Unknown M in 

relation to the other groups as the method is changed indicates of the spread of the angle 

cosines within the groups. 

While the groups seem to have a large variance, given the large changes in the 

similarity indices from single linkage to complete linkage and the movement of Unknown 

M, the groups are well-defined and well-separated. This interpretation arises from the 

formation of the same groups regardless of method chosen. If different groups were formed 

as the method of HCA changed, which is common, then a very judicious choice of groups 

would be required. 

121 



F      FF 
M     MM 

GGG 
MDT3D0D\ 

F   F   F 

Fuel-Soil Mixture 

fBGKJ JNX. 
PP      P 
44      4 

Figure 5.24. Complete linkage dendrogram of time-integrated fuel spectra. The angle 
cosine of the spectral vectors subtracted from unity was used as the measure of similarity. 
Sapphire window (interference) factor, obtained from rank five 3M-NNALS 
decomposition, was removed before integration. The known spectra are indicated by their 
fuel abbreviations and the unknowns by their letter designators. 
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Figure 5.25 contains the average linkage dendrogram for the data depicted in Figures 

5.23 and 5.24. Once again, the groups are nicely separated and distinct. A similarity index 

cutoff of approximately 0.4 separates the four fuels, leaving Unknown M isolated. 

Based on the results presented, HCA is an excellent method of grouping fuel mixtures. 

The average linkage method of clustering is probably as good a choice as any, although the 

single and complete linkage methods should be examined in each case. The angle cosine of 

the time-integrated fluorescence spectra is an excellent measure of similarity, and it is easy 

to apply to fluorescence emission data. This should be a valuable tool in site 

characterization. 

Of course, as in classification, it is important to numerically remove any interferences 

before HCA. If the sapphire window component is not removed, many of the low 

concentration mixtures would not cluster correctly. 
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Figure 5.25. Average linkage dendrogram of time-integrated fuel spectra. The angle 
cosine of the spectral vectors subtracted from unity was used as the measure of similarity. 
Sapphire window (interference) factor, obtained from rank five 3M-NNALS 
decomposition, was removed before integration. The known spectra are indicated by their 
fuel abbreviations and the unknowns by their letter designators. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary of the Present Work 

This research represents the first application of TLD and global analysis methods to a 

WTM-concentration 3-array and a TREEM. This is also the first use of TLD methods on 

highly complicated data in the form of fluorescence of fuels. Previous works have applied 

TLD methods to EEM-concentration/quencher level arrays36'39'62 and EEFAs59"61 of 

solutions with only a few components. TLD of WTM based data gives greater flexibility 

than EEM based data since it can be fit to a well-established model, exponential decay, 

which can be utilized in a three-mode global analysis scheme. WTM data typically have 

better S/N than EEFA data because optical switches used in phase-modulated instruments 

do not provide perfect modulation. 

Global analysis of fluorescence decay time-mode data has been used to decompose 

WTMs of two component mixtures;   however, global analysis of three-mode data has not 

been performed. 

The efficacy of classification and clustering algorithms applied to reduced forms of 

three-mode fuel fluorescence data was also demonstrated. 

Analyses of Data Set One illustrate the capabilities of various rank estimation and 

profile extraction techniques with low rank data. Data Set One consists of seven WTMs. 

The WTMs were the fluorescence response of six solutions containing varying amounts of 

fluorene, pyrene, and naphthalene in water and a water blank. Including the water Raman 

scatter as a component, the 3-array has an a priori rank of the 3-array of four. 
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Excellent rank estimates of the matrix summed WTMs of Data Set One were obtained 

using Malinowski's factor indicator function, F-test, and first-lag autocorrelation 

coefficient of the wavelength-mode eigenvectors. The first-lag autocorrelation coefficient 

of the time-mode eigenvectors did not give good rank estimates. However, time-mode 

based estimates could be improved by using a cutoff value greater than +0.5, which was 

used for the wavelength mode. This is the first use of matrix summation of the WTMs 

before rank estimation reported. It represents a significant improvement of the capabilities 

of rank estimation of 3-arrays. 

The four component WTM-concentration 3-array in Data Set One was easily 

decomposed with an EBP, 3M-ALS, and 3M-NNALS. 3M-ALS and 3M-NNALS offered a 

slight improvement to the EBP result. 3M-NNALS offered a minor computation time 

improvement over 3M-ALS. 

Profile extraction using global analysis on Data Set One provided good results when 

seeking three nonzero lifetimes and including a zero lifetime scatter component. However, 

global analysis did not perform well when attempting to also extract the profile of a very 

weak interference, which was discovered in the three-mode analyses. 

Data Set Two is a four-component TREEM of a single solution of fluorene, 

naphthalene, carbazole, and phenanthrene. The spectra of carbazole and phenanthrene are 

heavily overlapped, and the lifetimes of naphthalene and phenanthrene are very similar. 

These factors made for a difficult decomposition problem. 

Performance of rank estimation methods were essentially the same as for Data Set One. 

A matrix representing the compressed 3-array was produced by matrix summation of the 
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four WTMs obtained at the excitation wavelengths utilized to generate the TREEM. 

Excellent rank estimates were obtained using Malinowski's factor indicator function, F- 

test, and first-lag autocorrelation coefficient of the wavelength-mode eigenvectors. The 

first-lag autocorrelation coefficient of the time-mode eigenvectors did not give good rank 

estimates using +0.5 as a cutoff value. 

TLD was performed on this data using an EBP, 3M-ALS, and 3M-NNALS. The EBP 

and 3M-ALS were unable to provide realistic factor profiles for this data. This was 

probably the result of the similarity in lifetimes of naphthalene and phenanthrene. 

3M-NNALS produced very good results, generating recognizable factors in one-tenth of the 

time required by 3M-ALS. 3M-NNALS provides substantially improved results over 

3M-ALS, a notable advancement of three-mode decomposition. 

Global analysis, performed using the methodology employed with Data Set One, failed 

to produce a satisfactory result for any number of factors. The algorithm either failed to 

obtain recognizable factors or terminated with two nearly identical lifetimes. The latter 

condition resulted in an ill-conditioned solution of the excitation-emission mode. 

A hybrid form of analysis, which combines global analysis with NNALS, provided very 

promising results that were nearly identical to 3M-NNALS. However, the algorithm was 

very time intensive. This utilization of the time-mode information in conjunction with 

three-mode analysis is unique. We believe this methodology has great potential as an 

analysis technique because there is a model in the time mode which does not exist in the 

excitation or emission modes. 
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The final set of data examined in this research was composed of WTMs of fuels on soil 

matrices. This data contained an interference in the form of sapphire window fluorescence. 

The goal of analysis was to use TLD to remove the interference, and, in the process, 

generate descriptors of the data that could be used in a classification scheme. 

Rank estimation was performed for this data in the same manner as in the two previous 

data sets. The rank estimates were smaller than expected, considering the number of 

fluorescing species in fuels. 

TLD using an EBP was not successful, yielding complex eigenvectors or chemically 

meaningless factors. 3M-ALS performed better than the EBP, but it produced multiple 

factor degeneracies and took a great deal of computation time. 3M-NNALS performed best 

of the three TLD procedures. It generated factors which may be interpreted as real factors, 

although no assignment was attempted. Computation time was at least two orders of 

magnitude faster than 3M-ALS. The rank five decomposition provided the best match for 

the sapphire window factor. 

Classifications of the unknown fuels using the mixture-mode factors from 3M-NNALS 

were very good. Using all of the rank five factors as descriptors, 22 out of 24 unknown 

fuels were correctly classified. Omitting the suspected window factor and using the 

remaining four factors as descriptors, 22 out of 24 unknowns were classified correctly. One 

of the unknowns was misclassified in both cases. In all cases of misclassification, the fuels 

were low concentration and were usually on the soil matrix with the poorest fluorescence 

response. 
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Classification rates were improved, often to 100%, when the window factor was 

subtracted from the 3-array. After performing eigenanalysis on the 3-array or the 

time-integrated spectra of the fuels, the mixture-mode eigenvectors were used as 

descriptors of the fuels. 

HCA was performed utilizing metrics computed from the various descriptors described 

in the preceding paragraph and one minus the angle cosine as measures of similarity. HCA 

was a good method of grouping the fuel mixtures. Using the angle cosine as the measure of 

similarity is intuitive and gave excellent cluster results. Forming linkages with the all 

linkage methods worked well, and each should be utilized for each application of HCA. 

6.2 Recommendations for Future Work 

Future efforts in this area should be directed at evaluating more fuels and fuel types. 

These analysis techniques may be able to detect subtle differences in fuels, but this must be 

explored. 

To understand the complexities of fuel component interactions, mixtures of simulated 

fuels can be prepared and analyzed using these fluorescence techniques. Simulated fuels 

could easily be prepared in a progressive fashion, allowing examination of the interactions 

as they develop. Using this methodology, phenomena such as the low rank of the fuel 

WTMs may be addressed. 

Oxygen quenching can be problematic in time-mode fluorescence spectroscopy. In the 

presence of oxygen, the intensity of the fluorescence is diminished and the lifetime 

shortened. If two samples of the same fuel undergo different levels of quenching, their 

components will have different lifetimes, but identical emission modes. This will make for 
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a difficult analysis problem because the time-mode will have a higher rank than the 

emission mode. Restricted Tucker models37 are designed to deal with problems of this 

type. Current programs can be easily modified and tested to perform this type of analysis. 

The 3M-NNALS routine works by setting all negative elements in a matrix to zero after 

each iteration. This rather abrupt method may lead to trapping the solution in a local 

minimum. A more amenable procedure would involve setting the negative elements 

progressively less negative each iteration. For example, reduce the negative elements by 

1% on the first iteration; and on successive iterations, reduce them by an additional 1%. In 

this way, the unrealistic solutions are guided gently back into the region of real solutions. 

Since fluorescence is easily capable of higher orders than used in the present work, 

consideration should be given to acquisition and analysis of fourth order data. Excitation- 

emission-time-concentration data could be generated at the present time with no 

modifications to existing equipment. Advantages of this type of data over third-order data 

are not known. However, an additional mode of data may allow degeneracies in one mode 

to be lifted in another, for example, quenching. 

Time-mode data is unique because an entire vector of data can be expressed as a single 

variable, lifetime, for a single component. Greater effort should be directed at developing 

the three-mode global analysis. One method which may be of interest would force the 

time-mode to fit the convolutional model of equation 2.11 after each iteration of a 3M-ALS 

or 3M-NNALS sequence. This may generate more realistic solutions in some cases. 

These physical methods and fluorescence analysis techniques should be applied to areas 

outside of environmental analysis. Medical diagnostics is one area that has been exploring 
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fluorescence. Advances in environmental analysis may be readily applied to diagnosis of 

cancer and cardiovascular disease and medical monitoring. 

Classification of healthy and diseased tissue utilizing third- or higher-order data with 

one mode of data as a healthy/diseased-mode (analogous to the fuel type mode) is easily 

conceivable. This type of analysis would facilitate identification of the biochemical 

indicators of disease. 
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APPENDIX A. DEFINITIONS AND NOTATION 

Throughout this thesis, I used the conventions drawn from the chemometric literature 

for displaying vectors and matrices.33,58'79"81 Scalar quantities are represented by lower case 

letters. Scalars which are elements of a vector or matrix are labeled by subscript indices 

indicating row and column. Column vectors are indicated by bold lower case letters, e.g., 

a. Row vectors are denoted by a prime, e.g., a'. Matrices are represented by bold upper 

case letters, e.g., A. Therefore, 

ciy is a scalar (the subscript denotes the {(/}th element of the matrix A). 

a,= 

fly 

a2j 

a . 
. mJ. 

is the/th column vector (in m-coordinate space). 

a' = [an an ••• a^] is the ith row vector (in n-coordinate space). 

Definition A.l.   (Inner Product) The inner product (also called the dot product or scalar 

product) of two vectors is 

ab=aT) = [ai a2 —a.] 

X 

_  n_ 

= a1bl+a2b2+-~+aDbD (A.1) 

Definition A.l. Note 1. The inner product is a scalar, and it requires that both vectors 

have the same number of elements. 
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Definition A.l. Note 2. The properties of the inner product are preserved whether the 

vectors are row or column vectors, i.e., 

a b = a' b=a b' 

Definition A.l. Note 3. (Vector Norm) The length (or norm) of a vector is given by the 

square root of the inner product of the vector with itself: 

|a|| = (2«1
2)^=Va7I = Va^ (A.2) 

Definition A.2.   (Normal Vector) A normal vector has unit length. That is, for the 

normal vector a, 

H-i- 
Definition A.2. Note 1. A vector may be normalized by setting its length equal to one. 

This is done by dividing the vector by its length, e.g., 

H' 
Definition A.3.   (Orthogonal Vectors) Two vectors are orthogonal if their inner product 

is equal to zero (0). 

Definition A.4.   (Orthonormal Vectors) Two vectors are orthonormal if their inner 

product is equal to zero and their lengths are equal to one (1). 

Definition A.5.   (Matrix Dimension) A matrix that has m rows with n elements in each 

row is said to have matrix dimensions m by n. A convenient shorthand for representing the 
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m by n matrix A is Amxn, so 

A — A 3x2 = 

au «12 

«21 «22 

«31 «32. 

is 3 by 2 a matrix. 

Definition A.5. Note 1. In many texts, this property of a matrix is called the order of the 

matrix. However, the term order is used to describe a variety of properties of matrices 

and arrays in various texts and publications and here. 

Definition A.6.   (Matrix Addition) Matrix addition is the addition of the corresponding 

elements of matrices of identical dimensions. For example, the sum of matrices A3x2 and 

«3x2 IS 

«11+^11     «12+^12 

A 3x2+« 3x2 = a2l+b2X  a22+b22 

_«31+^31    «32+^32. 

Definition A.6. Note 1. Matrix addition of matrices of different dimensions is 

undefined. 

Definition A.6. Note 2. Vector addition is completely analogous to matrix addition 

where one of the matrix dimensions is one (1). 

Definition A.7.   (Scalar Multiplication) Multiplication of a scalar by a matrix is the 

product of each element of the matrix by the scalar multiplier. The product of a and B3x2 

is 

««3x2=« 

p>n ^12 

^21 ^22 
= 

Ai kj2_ 

abn abl2 

ab2i ab22 

ab3l abn 
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Definition A.7. Note 1. Scalar multiplication of a vector is completely analogous to 

scalar multiplication of a matrix. 

Definition A.8.   (Matrix Multiplication) Multiplication of two matrices, denoted AB, is 

accomplished by computing the inner product of the ith row of the left matrix (A)with the 

y'th column of the right matrix(B). Matrix multiplication requires that the two matrices be 

conformable, that is, the number of columns of the left matrix must equal the number of 

rows of the right matrix. Therefore, if Amxn and Bpxq are to be multiplied, then n must 

equal/?. If n * p, then multiplication is not defined. For example, 

AB = 

[2 4 3] 
2 0 1 

2 1 1 = 

1 4 3 
[2 3 1J 

4+0+2 8+0+3 6+0+1" 

2+8+6 4+4+9 3+4+3 

'6   11  7 
16 17 10 

Definition A.9.   (Matrix Rank) The rank of a matrix is the maximum number of linearly 

independent column (or row) vectors in the matrix. 

Definition A.9. Note 1. The rank of a matrix is the true underlying order of that matrix. 

Rank is also defined as the order of the largest matrix with a nonzero determinant 

formed by deleting rows and columns of the original matrix. The maximum rank of the 

matrix Amxn is the minimum value of m and n. The rank of Amxn is denoted by 

Definition A.9. Note 2. A matrix whose rank is less than minimum of its dimensions is 

said to be rank deficient. 

Definition A.9. Note 3. A zero matrix (a matrix all of whose elements are zero) has rank 

0. 
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Definition A. 10.   (Square Matrix) A square matrix has the same number of rows and 

columns. Therefore, the matrix Amxn is square if m=n. 

Definition A.11.   (Matrix Transpose) The transpose of a matrix is obtained by 

interchanging the rows and columns of the matrix. Transpose is indicated by a prime, so, 

If A = 
"2 1 3 

547 
then A' = 

25 

14 

37 

Definition A.12.   (Diagonal Matrix) A diagonal matrix is a square matrix with zero 

elements except along the principal diagonal. Any matrix, A, is diagonal if atj =0 for all 

i*'j, and if at least one atj * 0 when i = j. Therefore, 

A = 

2000 

0300 

0000 

0006 

is a diagonal matrix. 

Definition A.13.   (Identity Matrix) An identity matrix, I, is a diagonal matrix with ones 

along the principal diagonal. Since the identity matrix is always a square matrix, its 

dimensions are indicated by a single subscript, I„. The matrix product of any matrix with 

the identity matrix is itself. 

1 = 

10-0" 

0 1—0 

00- 1 

A    T  = A 
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Definition A.14.   (Matrix Inverse) The inverse of an n by n (i.e., a square matrix) is 

another matrix such that the product of the two matrices is an identity matrix. The inverse 

of a matrix is denoted by a superscript (-1). An invertible matrix is said to be nonsingular. 

A-1 A      =1 ** 3x3A 3x3       x3 

Definition A.14. Note 1. A rank deficient matrix will not be invertible since it will have 

a determinant equal to zero. Rank deficient matrices are also called singular matrices. 

Definition A.15.   (Matrix Pseudoinverse) The pseudoinverse of a matrix is the least 

squares solution to a set of linear equations. It is designated by a superscripted cross (+). 

b = Ax 
AT> = A Ax 

(A 'A)"1 A T> = (A 'A)"1 A 'Ax 

(A'A)"1A'b = Ix = x 

A+b=x 

A+ = (A'A)~ A' = pseudoinverse(A) 

Definition A.15. Note 1. The pseudoinverse is usually used when A is a rectangular 

matrix (i.e., m by n), since A has no true inverse.. Also, the condition m > n must be 

satisfied or the matrix (A'A) will be singular. 

Definition A.16.   (Orthonormal Matrix) A matrix whose column vectors are mutually 

orthonormal is a column-wise orthonormal matrix. It has the convenient property: 

A'A=I. 

Likewise, a matrix whose row vectors are mutually orthonormal is a row-wise orthonormal 

matrix, and 

AA'=I. 
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Definition A.16. Note 1. (Orthogonal Matrix) A matrix whose column vectors are 

mutually orthogonal is a column-wise orthogonal matrix. It has the property: 

A'A=D 

where D is a diagonal matrix. 

Likewise, a matrix whose row vectors are mutually orthogonal is a row-wise orthogonal 

matrix, and 

AA=D. 

Definition A.17.   (Matrix Square Root) Let Y be the matrix square root of X, then, 

YY=X. 

and, 

Y=X*2. 

Definition A. 18.    (Matrix Norm) The norm of a matrix is a scalar that gives a measure 

of the magnitude of the elements of the matrix. Here the matrix norm is defined as: 

Definition A. 19.   (Angle Cosine) The cosine of the angle, 0, between two vectors a and 

b (also called the angle cosine) is 

cos0 = , M (A.4) 
a 

Definition A.20.    (N-way Array) An array is an ordered collection of scalars. An Af-way 

array, or iV-array, is an ordered collection of scalars which have indices that extend info N- 

dimensions. A matrix is a 2-array and is a rectangular array of scalar elements. Likewise, a 

3-array is a rectangular parallelepiped array (a "box" or "cube") of scalar elements. Higher 
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order arrays ("hyperboxes" or "hypercubes") extend into higher dimensional space and do 

not have a geometrical analog, but they are readily conceivable and do exist. 

Definition A.20. Note 1. Many authors substitute the term "mode" for "way" when 

discussing N-arrays. Tucker82 introduced this term to describe "a set of indices by 

which data might be classified." The two terms are synonymous. 

Definition A.21.   (Array Order) The order of an AMvay array is the number of 

dimension into which the array extends, i.e., N. A scalar is defined as a zero-order array. 

Using Definitions A. 13 and A. 14 then: 

scalar = 0-array = array of order 0, 

vector = 1-array = array of order 1, 

matrix = 2-array = array of order 2, 

box     = 3-array = array of order 3, 

hyperbox = (iV>3)-array. 

Definition A.22.   (Array Unfolding) An iV-array (N>2) can be rearranged so that it is in 

the form of a matrix or a partitioned matrix. When the different "layers" or "slices" or 

"slabs" of the iV-array are placed into a single "plane," this is referred to as the "unfolded'' 

of "flattened' form of the array. 

Definition A.22. Note 1. The unfolding operation can be performed in many ways and 

must be in the analyses discussed in this thesis. 

Definition A.23.   (Outer Product) The outer product (also regularly called the direct 

product or tensor product) of N vectors, a, b, c,... whose elements are a,, bj, c*,..., 
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generates an TV-array whose elements are aibfik.... Outer product of vectors is indicated by 

<8>,e.g.,a®b<8>c<8>.... 

Definition A.24.   (Outer Product Array) An outer product array is any array which can 

be expressed as an outer product. 

Definition A.24. Note 1. The outer product of two vectors, a and b, is the outer product 

2-array, M: 

M = a®b = ab' = a. 
a L"3J 

[2>i   b2   b3   b4] = 

aj>x    axb2    afa    axb4 

a2bx    a2b2    a2b3    a2b4 

a3&l       a3&2      ^3^3       #3^4 

(A.5) 

Clearly, M is a rank 1 matrix since all of the columns (and rows) are linear combinations 

of the other columns (rows). A rank 1 matrix, i.e., outer product 2-array, is referred to 

as a dyad. 

Definition A.25.   The outer product of three vectors, a ® b ® c, generates an outer 

product 3-array which is referred to as a triad. The general case of an outer product A^-array 

produces an N-ad. The outer product of three vectors and the 3-array generated is displayed 

in Figure A. 1 and represented algebraically in Equation A6. Unfolding any iV-array is a 

straightforward extension of the three-way model shown in Figure A.l. 
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a<8>b® c = 

Unfold operation 

/ v    ££&^t ^r^r^ 
a            — 

-_ 
  

-_ 
-J 
-■ 

Slabl Slab 2   Slab 3 
Figure A. 1. Unfolding of outer product 3-array. The outer product of three vectors a, b, 
and c with dimensions 5,4, and 3, respectively. The result is a 3-array with 3 (= c 
dimension), 5 by 4 slabs. Unfolding yields the 5 by 12 matrix. 

Figure A.1, written in matrix form, is 

a®b®c= 

a\ 
*, _       _ 

a2 Ci 

a3 ® 0 c2 

a4 
K LCl\ w 

axbxcx axb2cx axb3cx axb4cx 

a2bxcx a2b2c1 a2b3cx a2b4cx 

a3bxcx a3b2cx a3b3cx a3b4cx 

a4bxcx a4b2cx a4b3cx a4b4cx 

a5bxcx a5b2cx a5b3cx asb4cx 

(A.6) 

axbxc2 axb2c2 axb3c2 axb4c2 

a2bxc2 a2b2c2 a2b3c2 a2b4c2 

a.3bxc2 a3b2c2 a3b3c2 a3b4c2 

a4bxc2 a4b2c2 a4b3c2 a4b4c2 

a5bxc2 a5b2c2 a5b3c2 a5b4c2 

axbxc3 axb2c3 axb3c3 axb4c3 

a2bxc3 a2b2c3 a2b3c3 a2b4c3 

a3bxc3 a3b2c3 a3b3c3 a3b4c3 

a4bxc3 a4b2c3 a4b3c3 a4b4c3 

a5bxc3 a5b2c3 a5b3c3 a5b4c3 

Definition A.26.   (Multiple Product) The multiple product of N matrices, all having the 

same number of columns R, is the sum of their R N-ads, specifically, 

®(AaxÄ,BfcxÄ,Ccx„-") = I>r®b,®cr®"- 
r=l 

is the multiple product of AaxR,BbxR,CcxR 
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Definition A.27. (iV-adic Decomposition) For the N-array, X, the N-adic decomposition 

is the set of matrices {A,B,C,...}, each having R columns, whose multiple product is equal 

to X, i.e., 

X = ®(AaxÄ,   BbxR,   CcxR,---). 

Definition A.28.   (Array Rank) The rank of an iV-array, X, is the minimum value of R 

(see Definition A.27) for which an iV-adic decomposition of X exists, i.e., the minimum 

number of iV-ads which is equal to X. The array rank of X is indicated by j?  (X). 

Definition A.28. Note 1. By definition, all N-ads are rank 1 arrays. 

Definition A.29.   (Kronecker Product) The Kronecker product (also called the direct 

product) of two matrices is formed by generating the product of each element of one matrix 

with each element of the other matrix in an ordered way. The Kronecker product of Anxt 

and Bmxp is Cnmxkp, defined as: 

C=A®B= 

anB a12B 

a21B a22B 

a„iB a„2B 

a2kB 

«^B_ 

Definition A.30.   (Positive Definite Matrix) A symmetric matrix is positive definite if 

and only if all of its eigenvalues are greater than zero. 

Definition A.31.   (Positive Semidefinite Matrix) A symmetric matrix is positive 

semidefinite if and only if all of its eigenvalues are greater than or equal to zero. 

Definition A.31. Note 1. Positive semidefinite matrices are also called nonnegative 

definite matrices. 
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Definition A.32.   (Gramian Matrix or Gramian Association Matrix) A positive 

semidefinite matrix. 

Definition A.32. Note 1. There are four types of Gramian matrices. These are formed 

from the data matrix, A, by taking A'A or AA' after any preprocessing: 

(1) Inner product matrix (Data unstandardized) 

(2) Cosine matrix (Data scaled to unit variance) 

(3) Covariance matrix (Data centered about mean) 

(4) Correlation matrix (Data standardized) 

See Chapter 3 for descriptions of centering, scaling, and standardizing. 
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APPENDIX B. THREE-MODE MODELS 

Tucker Models, Three-Mode Factor Analysis, and Trilinear Models 

Analysis of iV-arrays was pioneered by Tucker82 who developed the unfolding 

methodology for iV-arrays discussed in Appendix A. His notation and methodology has 

been the backbone of multimode analysis ever since. Therefore, a brief explanation of his 

methodology is warranted. The discussion will begin with the 2-array notation and then 

progress to the more complex 3-array notation. 

B.l Tucker Models 

Tucker's notation involves using pre-subscripts and post-subscripts around the letter 

representing the matrix to designate the mode of the row and column information, 

respectively. Choosing the lower case italic letters i and j to represent the two modes, a 

two-mode matrix (2-array) oriented / by j would be written ,. Xy.. The subscript has several 

related but distinct roles: (1) as a general identification of the mode, (2) as a subscript 

identifying the mode to which an element belongs, and (3) as a variable identification 

symbol for the elements in the mode. For illustrative purposes, let, X^ be a matrix of 

fluorescence intensities for a mixture of fluorophores measured at different excitation and 

emission wavelengths, i.e., an EEM. 

The first usage of this notation would be to designate mode / as fluorescence excitation 

wavelengths and mode./ as fluorescence emission wavelengths. The second usage is 

illustrated by assigning identification symbols to the different excitation wavelengths, i.e., 

1,, 2,, 3,, • • •, Nj. The numeral in the identification symbol is the index value of the 
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element, and the subscript indicates the mode. So, if one measured fluorescence intensities 

as a function of excitation at 10 nm increments from 250 nm to 350 nm, 3,. would 

represent 270 nm and as an index for any intensity at 270 nm. The number of elements in 

mode i is given by Nt and in mode; by Nj. Thus, the dimension of (. X; is Nt by Nj. 

The third use of the mode symbol is as a variable identifier of a scalar element of the 2- 

array,e.g., xtj. 

Using this notation, the transpose of the 2-array , ,. X., is simply written as ;. X,. 

Writing the product of two 2-arrays joins the post-subscript of the left 2-array with the 

pre-subscript of the right 2-array, since they must be identical, e.g., 

,A;B*4AXB*)or- 

Now consider the factor analysis of the EEM, , X.. 

Factor analyzing the EEM, (. Xt, into three matrices can be expressed as: 

,.X,=.A„GnB,+N (B.l) 

where , An, is an Nt by Nn orthonormal factor matrix whose columns are the 

eigenvectors of ,-X.X,., ;Bn is an Nj by Nn orthonormal factor matrix whose columns 

are the eigenvectors of . XtXj, n Gn is a diagonal matrix of square roots of eigenvalues 

associated with the Gramian inner product matrices ,. X;X; and ;. XtXj, also called the 

"core" matrix, and N is a measurement error matrix of dimension Nt by Nj. This is 

equivalent to the singular value decomposition of t Xy., i.e., 
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x=usv. (B.2) 

The number of singular vectors, Nn, is chosen to equal the rank of , Xr Therefore, after 

selecting only the first Nn singular vectors and values, 

,A„G B.=.UnS„V,.. i      n     n     j     i      n    n     j (B.3) 

Physically meaningful factors are obtained by coordinate rotation of the eigenvectors by a 

square transformation (or rotation) matrix T. Letting ,Fn=I.AnG„, then, 

F =.FT in*     in    n* 

-1 ,Bn» = ;B ,T, j      n*     j     n    n* 

(B.4) 

(B.5) 

where n* is the transformed derivational mode and „ T„,T„ = I. n    n*    n 

The extension into the three-mode case is straightforward; however, it involves an 

adjustment to the notation to accommodate higher order arrays. Consider a 3-array with 

modes i,j, and k, X. The elements in the array, xiJk, form a box, which has the dimensions 

Nt, Nj, by Nk. Now, let the array be unfolded so that it now is a matrix with elements 

ordered i by (jk), where (jk) is read as ./-outer loop, dinner loop. Such an arrangement is 

written ,XW. For example, let ,-Xw be a Nt =5 by Nj =4 by Nk =3,3-array, suchthat 

i^Uk)~ 

•"•111 
x\\z xm 

*2U X212 
xm 

x311 •*312 •"•313 

xm -"•412 •*413 

•*5ii -"•512 X513 

-*121 xm 
xm 

x221 XZ12 
xm 

-"•321 Xlll ■*223 

*421 •"•422 *223 

*521 *522 -"223 

xm ""•132 Xj33 

X7i\ *232 JC233 

xm *332 *333 

*431 ■*432 *433 

xm •"'532 "*533 

*141 -"'142 -"■143 

*241 *242 ■*243 

Xm ■"•342 •"■343 

•^441 ■"■442 *443 

•"•541 -"■542 ""•MS. 

(B.6) 

The notion of j'-outer loop, dinner loop is easily visualized by the following diagram: 
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1* 2, 3t 

1, 

3. 

4, 
5.. 

2; 3; 4, 
12   3 

Xijk 

12   3        12   3 xt  ^t   Jk xk ^k  Jk 

Based on the discussion thus far, note that 

2) The unfolding method illustrated in Appendix A represents an i by Qcj) 

arrangement (considering /, k, and y to represent the a, b, and c modes, respectively). 

Two other important array orientations are presented below. These will be used in the 

factor analysis in this thesis: 

jXm- 

*111 XU2 XWb 

X\2\ X\12 
x\n 

xm X\S2 
xm 

X\A\ XU2 xm 

*211 x2n *213 

x22: •^222 *223 

*231 *232 *233 

X241 X2A2 *243 

*311 ■*312 -"■313 

•*321 •"•322 *323 

-"•331 ■"•332 •*333 

*341 -*342 *343 

^411 *412 
xtn 

•*421 -"•422 
Xm 

•*431 X412 X433 

*441 XM2 ■*443 

-"•sii -*512 ■*513 

X521 *522 ■"■523 

-^531 ■*532 x533 

•^541 •"•542 •"■543 _ 

(B.7) 

* X07) - 

xm xl21 xm xHl 

XU2  X\22  JC132  J:142 

.-^113 -*123 xm xw 

X2U   -^221   ■X231   *241 

x212 JC222 JC232 *242 

•*213  •X223  *233  *243 

■*311   *321   -^331   *341 

-"•312 •*322 •"'332 ■X342 

-"•313  *323  ""^S  *343 

*411   *421   *431   -*441 

*412 •"•422 *432 *442 

*511   XS21   •"'531   *541 

•"•512  •"'522  *532  *542 

*513 *523  *533  X543. 

(B.8) 

B.2 Three-Mode Factor Analysis 

Three-mode factor analysis involves decomposing the 3-array into orthonormal factor 

matrices and a core array. In summational form, the array is written: 

*P=Z£5X biP c*q 8^+nuk (B-9) 
m     p     q 
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where a, b, and c are the elements of the three factor matrices and g is an element of the 

three-mode core matrix. In matrix notation, 

iXy^A.G^B^.CJ+N (B.10) 

where the notation is the same as the 2-array case except for mG(pg), which is an unfolded 

core 3-array. The matrices ,. Am, ;.Bp, and k Cq are extracted from the Gramian inner 

product matrices, 

,M,.=.X(,t)X(. (B.ll) 

,P,=,XWX; (B.12) 

tQ*=4XW)Xt (B.13) 

respectively, by solving, 

,M,.Am=:Am Am (B.14) 

*Q*C,=4C, v9 (B.16) 

where Am, /im, and vm are the eigenvalue matrices associated with , Am, }B p, and ^ C?, 

respectively.  iVm significant eigenvectors of (M; are used to form ,Am, Np significant 

eigenvectors of ,P( are used to form ,Bm, and Nq significant eigenvectors of ,Q, are used 

to form ,. Cm. The core array is then given by 

„G(W)=,A?XW(,B;®4CJ) (B.17) 

where, mA* =((Am)+, etc. Since ,Am, ;Bp,and qCk are all column-wise sections of 

column-wise orthonormal matrices, equation B.17 becomes simply 
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.G<„>=.A,Xw(jB,®tC€). (B.18) 

Tucker's approach is only exact if all of the eigenvectors of the Gramian matrices are used, 

i.e., if i=m, j=p, and k=q. Tucker noted that "these procedures do not produce a least- 

squares approximation to the data." Kroonenberg and De Leeuw83 corrected this deficiency 

by developing an alternating least squares (ALS) algorithm which they called TUCKALS3. 

The TUCKALS3 solves iteratively for values of , Am, ;Bp, kCg and mG(pq) in turn, 

using the new estimates for these matrices in subsequent steps. 

A Substep: 

..M^.-^^B^^^C^CJ^X,. (B.19) 

,Äm=.M1.Am(mA,.M(.M1.AJ-V2 (B.20) 

B Substep: 

,P,=,X(tt)(/ÄJllAJ®4C€C4)(tt)X, (B.21) 

fi-jVjB^BjVjVjB,)-» (B.22) 

^C.^Q.C^QC.Q.Q.C,)-1/2 (B.24) 

Starting values of , Am, yBp, and k Cq are obtained from Tucker's method in Equations 

B.12-B.14. After evaluating the substeps, the core array, mG(pq), is estimated using 

Equation B.16, completing an iteration. After each iteration, the fit is evaluated by 

examining the residuals of the data and the fit. Termination is based on reaching a 

C Substep: 
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minimum of the square of the norm of the residual array,/, i.e., 

(B.25) 

This may also be written, 

/ = 

—    Y 
~   iA(;t) - U.G^B^CJ 

i^W »"(PJ) (B.26) 

m™(pq) is a measure of the amount of the system variance explained by the model. The 

squares of the elements of the core array, g2
mpq, indicate the amount of variance explained 

by the corresponding combination of factors (m, p, and q) from each mode. 

Transformation of the three-mode principal factors is performed using three 

transformation matrices, mTm„, pTpt, and qTqt. 

A    = A T 

JBP*-JBPTP* 

C   = C T 

(B.27) 

(B.28) 

(B.29) 

The transformed core matrix is then 

C —   T  P       ( T   6?) T   "4 
*      (P*q*)~m*   m       (P9)^P   P*      9    «*' ' 

(B.30) 

It is possible to manipulate the core matrix in three-mode analysis to create a more 

parsimonious model. This may be done by setting small values of gmpq to zero, during or 

after three-mode analysis, or by using chemical knowledge of the system at hand to select 

elements of the core matrix which are nonzero and setting the rest to zero. A special case 

of the restricted Tucker model is the trilinear model. 
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B.2 Trilinear Models 

The trilinear model has core modes (m, p, and q) of equal dimension, so 

Nm=Np=Nq, and the core array is superdiagonal, i.e., the fth diagonal element of the rth 

slab of the core array, is nonzero; and all other elements are zero. For example, the 

unfolded core array, 

m^(pq) ~ 

'a   0   0 0   0   0 0   0   0" 

0   0   0 0   b   0 0   0   0 

0   0   0 0   0   0 0   0   c_ 

(B.31) 

with a * 0 and/or b * 0 and/or c * 0 is superdiagonal. In trilinear analysis, one seeks to 

find the minimal decomposition of a 3-array, i.e., the smallest value of Nm needed to fit the 

data or to find Nm=R (, X;jfc). The core array is usually not utilized explicitly when 

performing trilinear analysis, rather the model is represented as an N-adic decomposition, 

thus, 

X = ®(A,B,C) + N. (B.32) 

Solutions for A, B, and C are obtained by an ALS scheme, specifically, three-mode 

alternating least squares (3M-ALS), also known as PARAFAC. Setting the superdiagonal 

elements of the superdiagonal core array equal to one reduces equation B.10 to equation 

B.32. The algorithm proceeds as follows: 

A Substep: 

.M(»B.Gw(,B/«,C,) (B.33) 

»^i-»^(iH)X| (B.34) 
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B Substep: 

^„•«^.(„A;®,^) (B.35) 

,B,=,P(;,X, (B.36) 

C Substep: 

«Q^G^CA,®,!!,) (B.37) 

Iteration is complete when a minimum in/, 

/=|X-(®(A,B,C))|2 (B.39) 

is attained. The trilinear model has the very desirable property that its decompositions are 

rotationally unique, under certain assumptions, vide infra. This implies that any minimal 

decomposition of the 3-array X will generate equivalent decompositions, i.e., 

decompositions which are identical except for scaling and permutation ambiguities. 

To explain the conditions under which rotational uniqueness arises, some definitions 

are necessary. 

Definition B.l.   (Universal Ä>column independence) If a matrix A has j linearly 

independent columns, then A is said to have column rank./. This does not imply that all 

possible sets ofj columns of A are linearly independent. However, if every set of k 

columns of A is linearly independent, then A is said to have universal ^-column 

independence. 

Definition B.l. Note 1. All matrices have universal 0-column independence. If the 

matrix has no 0 columns, then it also has universal 1-column independence. In 
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addition, if the matrix has no 0 columns and has no identical or proportional columns, 

then it has universal 2-column independence. 

Definition B.2.   (fc-rank) The maximum value of k for which a matrix has universal 

^-column independence is called the fc-rank. 

A corollary to a theorem of Kruskal,12 which follows, states the condition required for 

rotational uniqueness. Let JA, JB, and Jc be the fc-ranks of the three /^-columns matrices A, 

B, and C, respectively. If 

JA +JB + Jc>2R + 2 (B.40) 

then ®(A,B>Q is rotationally unique. 
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APPENDIX C. EIGENANALYSIS-BASED PROCEDURES 

Direct Trilinear Decomposition 

This is a capsule review of the eigenanalysis-based procedures (EBP) for direct trilinear 

decomposition obtained from Reference 10. References 36 and 62 contain more detailed 

derivations of the method. 

Consider the simplest trilinear composed of two bilinear matrices, say EEMs of 

mixtures, each containing differing amounts of the same fluorophores. The trilinear model 

for this system is 

X = ®(A,B,C) (C.l) 

where X is an i byj by k 3-array with k = 2 and A, B, and C are i,j, and k by r, 

respectively. Also assume that all elements in C are nonzero. 

The two i by j slices of X may be written as: 

X,=AD,B' (C.2) 

X2=AD2B' (C.3) 

where D, is a diagonal matrix whose diagonal elements are the first column of C, and D2 

is a diagonal matrix whose diagonal elements are the second column of C. Both Xj and 

X2 share common column and row spaces whose eigenvectors are U and V, respectively. 

These can, in turn, be related to A and B by transformation matrices P and Q, respectively, 

i.e., 

A = UP (C.4) 

B = VQ (C.5) 
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Since it is a simple matter to compute the eigenvector matrices U and V, the task at hand is 

to compute the correct transformation matrices P and Q. 

To solve for P and Q, let 

L^U'X.V (C.6) 

and 

L2=irX2V (C.7) 

Combining equations C.2, C.4, and C.6, 

L, = U'X, V = U'AD.B'V = UTJPD.Q'W = PD,Q'       (C.8) 

and equations C.3, C.5, and C.7, 

L2 = U'X.V = U'AD.B'V = UXJPD2Q'W = PD2Q'     (C.9) 

Taking the product of LjL^1 yields 

L,^1 = PD,Q'Q' 'D-'P-1 = PD.D^P-1 (CIO) 

and the product of LJL^1, gives 

L;L^ = QD^PT'-'D, 'Q-1 = QD^-'Q ' (C. 11) 

Now, 

L,L"2
,P = PD1D2

1 (C.12) 

and 

L;Lr,Q = QD1D"1 (C.13) 

which are both in the form of eigenvalue equations and can be solved directly for P and Q. 

The extension to multiple slices in the third mode is accomplished by creating two 

matrices usually called G matrices, i.e., G, and G2. The G matrices, for generalized 
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matrices, are linear combinations of all of the slices in the 3-array such that all of the 

possible dyads are included for the analysis. The G matrices can be computed in a manner 

similar to L, and L2 and are used in their place in the calculations. 

After the estimates for A and B are determined, C is determined via least squares 

estimation as in 3M-ALS. 
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